Q. Code:999856

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

MA22352 – COMPUTATIONAL METHODS

(Marine Engineering)

(Regulation 2022)

	(Regulation 2022)		100
	ME: 3 HOURS MAX. MAF RSE STATEMENT MAX. MAF	KKS:	IUU RBT
OUTCO	DMES		LEVEL
CO 1	Have the fundamental knowledge of solving an algebraic or transcendental equa	tion,	3
	linear system of equations.		
CO 2	Appreciate the numerical techniques of interpolation in various intervals.		3
CO 3	Apply the numerical techniques of differentiation and integration for engineering problems.		3
CO 4	Solve Initial value problems using an appropriate numerical technique.		3
CO 5	Solve Boundary value problems using finite difference method.		3
	PART- A (20 x 2 = 40 Marks)		
	(Answer all Questions)		
		CO	RBT LEVEL
1.	Show that the Newton Raphson formula for \sqrt{N} is $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right), n = 0, 1, 2, 3$	1	2
2.	Solve $2x+y=3$, $7x-3y=4$ using Gauss Elimination method.	1	2
3.	Find the largest eigenvalue of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.	1	2
4.	Solve $5x+4y=15$, $3x+7y=12$ using Gauss Jordan method.	1	2
5.	Using Lagrange's formula, fit a polynomial to the following data:	2	2
	X -1 1 2 Y 7 5 15		
6.	$\underline{1}$ $\underline{-1}$	2	2
	Show that the third order divided difference of x for the arguments a, b, c, d is $abcd$.		
7.	Given $f(0) = -2$, $f(1) = 2$ and $f(2) = 8$. Find the root of the Newton's interpolating polynomial equation $f(x) = 0$.	2	2
8.	When is Newton's forward interpolation formula used?	2	2
	Page 1 of 5		

Q. (Code	:999	856
------	------	------	-----

9.	$\int_{a}^{4} e^{x} dx$	3	2
	Using Simpson's $1/3^{rd}$ rule, evaluate $\int \frac{\partial}{\partial t} \frac{\partial}{\partial t}$ given		
	$e^0 = 1, e^1 = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.6.$		
10.	How do you apply the Gaussian quadrature formula if the range is not (-1, 1)?	3	2
11.	What is the order of the error in the trapezoidal rule and Simpson's 1/3 rd rule?	3	2
12.	While applying Simpson's $1/3^{rd}$ rule, how many number of subintervals should be there?	3	2
13.	What is the disadvantage in using the Taylor series method?	4	2
14.	Using Taylor's series, find $y(0.1)$ correct to 2 decimal places if $y(x)$ satisfies	4	2
15.	y' = x+y, y(0) =1. Using Modified Euler's method, compute y (0.1) from $\frac{dy}{dx} = y - \frac{2x}{y}$, y (0) = 1.	4	2
16.	Given $y = -y$ and y (0) =1, determine the values of y at x = 0.01 by Euler method.	4	2
17.	$Classify f_x - f_{yy} = 0.$	5	2
18.	For what value of λ the explicit method of solving the hyperbolic equation $\frac{\partial^2 u}{\partial t^2} = \frac{1}{2} \frac{\partial^2 u}{\partial t^2}$ $\lambda = \frac{c\Delta t}{dt}$	5	2
19.	$\frac{\partial x^2}{\partial x^2} = \frac{\partial t^2}{\partial t^2}$ is stable where $\frac{\partial x}{\partial x}$? When does the finite difference formula for the solution of the wave equation assume its simplest form?	5	2
20.	Write down the finite difference form of the equation $\nabla^2 u = f(x, y)$.	5	2

PART- B (5 x 10 = 50 Marks)

		Marks	СО	RBT
				LEVEL
21. (a)	Solve using Gaussian elimination method: x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.	(10)	1	3

(OR)

(10)3

 $\begin{bmatrix} 2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8 \end{bmatrix}$ Using Gauss Jordan method, find the inverse of

The population of a town is given below. Estimate the population increase 3 22. (a) (10) 2 during the period 1946 to 1976.

			-					
Year	1941	1951	1961	1971	1981	1991		
Population	20	24	29	36	46	51		
(in lakhs)								
(OR)								

Find f(8) and f(15) by Newton's divided difference formula for the 3 **(b)** (10)2 following data:

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

23. (a)

(10)3 3

Find the first two derivatives of $f(x) = (x)^{\frac{1}{3}}$ at x = 50 and x = 56 given in the table below:

X	50	51	52	53	54	55	56	
У	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259	
(OR)								

Evaluate $\int_{-\infty}^{2} e^{x^2} dx$ by using Trapezoidal rule by taking 10 number of intervals. (10)3 **(b)** 3

Using Taylor's method, Compute y (0.1) and y (0.2) correct to 5 decimal (10)3 24. (a) 4

$$\frac{dy}{dx} = x^2 y - 1, y(0) = 1$$

places

(**OR**)

- **(b)** Using Runge-Kutta method of fourth order, find y(0.8) correct to 4 decimal 3 (10)4 places if $\frac{dy}{dx} = y - x^2$ given y(0.6) = 1.7379.
- Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x=0, x=3, y=0, y=3 given u=0 on the boundary and mesh 3 25. (a) (10)5 length =1 unit.

(**OR**)

Solve by Crank-Nicholson implicit finite difference method: (10)5 3 **(b)**

Page 3 of 5

 $u_t = u_{xx} \text{ in } 0 < x < 5$, $t \ge 0$ given that u(x,0) = 20, u(0,t) = 0, u(5,t)=100, with h=1 (up to time step)

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

		Marks	CO	RBT
				LEVEL
26.	Solve using Gauss-Seidel method correct to three decimal places:	(10)	1	3
	10 x - 5 y - 2 z = 3			
	4x - 10y + 3z = -3			
	x + 6y + 10z = -3			

Q. Code:999856