	Reg. No.	
	B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024	
	Third Semester	
	MA22351 – APPLIED MATHEMATICS III	
	(Chemical Engineering)	
	(Regulation 2022)	
TIME: 3 COURSE OUTCOMES	HOURS MAX. MARKS: 3	100 rbt level
CO 1	Develop skills in dealing with problems on ordinary differential equations and apply knowledge of LDE to solve the problems in Chemical engineering.	3
CO 2	Classify, formulate and solve the first order and second order linear, non-linear partial differential equations and apply the knowledge of partial differential equations to solve the engineering problems.	3
CO 3	Achieve an understanding of the basic concepts of periodic function and method of solving problems in Fourier series.	3
CO 4	Analyze and evaluate various partial differential equations such as wave equation, one- and two-dimensional heat flow equations.	3
CO 5	Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms and Z-transform.	3
	PART- A (20 x 2 = 40 Marks) (Answer all Questions)	
	CO	RBT LEVEI

			LEVEL
1.	How do you find the neutral axis of the beam?	1	2
2.	State any two applications of linear differential equation.	1	2
3.	Write a brief note on deflection curve.	1	2
4.	Show that the curve in which the portion of the tangent included between the co- ordinate axes is bisected at the point of contact is a rectangular hyperbola.	1	2
5.	Form the PDE by eliminating the arbitrary constants from $z = (x^2 + a^2)(y^2 + b^2)$.	2	2
6.	Find the PDE of all planes passing through the origin.	2	2
7.	Form the PDE by eliminating the arbitrary functions from $z=f(xy/z)$.	2	2
8.	Solve $\frac{\partial^2 z}{\partial y^2} = 0$.	2	2

9.	Find the root mean square value of $f(x) = x^2$ in the interval $(0, \pi)$.	3	2
10.	Find the constant term in the Fourier series expansion of $f(x) = x^2 - 2$ in $(-2,2)$.	3	2
11.	Determine the value of a_n in the Fourier series expansion of $f(x) = x_{in}^3 - \pi < x < \pi$.	3	2
12.	What do you mean by Harmonic Analysis?	3	2
13.	In the diffusion equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does α^2 stand for?	4	2
14.	What are the possible solutions of one dimensional wave equation?	4	2
15.	Find the nature of the PDE $4u_{xx}+4u_{xy}+u_{yy}+2u_x-u_y=0$.	4	2
16.	The ends A and B of a rod of length 10cm long have their temperature kept at $20^{\circ}c$ and $70^{\circ}c$. Find the steady state temperature distribution on the rod.	4	2
17.	Find the Fourier sine transform of e^{-ax} , $a > 0$. Hence find $F_s[x e^{-ax}]$.	5	2
18.	Prove that $F_c(f(ax)) = \frac{1}{a} F_c(\frac{s}{a}), a \neq 0$	5	2
19.	Find $Z[n]$.	5	2
20.	Form the difference equation by eliminating arbitrary constant from $y_n = A \cdot 2^n + B \cdot 3^n$.	5	2

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT LEVEL
21. (a)	Find the orthogonal trajectories of the cardioids $r = a(1 - cos\theta)$.	(10)	1	3
	(OR)			
(b)	The deflection of a strut of length <i>l</i> with one end $(x=0)$ built in and the	(10)	1	3
	other supported and subjected to end thrust P , satisfies the equation			
	$\frac{d^2 y}{dx^2} + a^2 y = \frac{a^2 R}{P} (1-x)$. Prove that the deflection curve is			
	$y = \frac{R}{P} \left[\frac{\sin ax}{a} - l \cos ax + l - x \right] $ where $al = \tan al$.			
22.(a) (i)	Solve $p \tan x + q \tan y = \tan z$.	(5)	2	3
(ii)	Solve .	(5)	2	3

(OR)

(b)
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$$
 (10) 2 3

23. (a) Expand $f(x) = x(\pi - x)$ in $0 < x < \pi$ as half range Fourier Sine Series. Deduce (10) 3 3 that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$.

(**OR**)

(b) Find a Fourier series up to the second harmonic to represent f(x) in terms of (10) 3 3 x for the following table values.

X	0	1	2	3	4	5
у	9	18	24	28	26	20

24. (a) A tightly stretched flexible string has its ends fixed at x=0 and x=l. At (10) 4 3 time t=0, the string is given a shape defined by $f(x)=kx^2(l-x)$, where k is a constant, and then released from rest. Find the displacement of any point x of the string at anytime t>0.

(**OR**)

- An infinitely long rectangular plate with insulated surfaces is 10 cm wide. (10)**(b)** 4 The two long edges and one short edge are kept at zero temperature while other short edge x =0 is the kept at temperature u(0, y) = i | 20y for $0 \le y \le 5iii$. Find the steady state temperature distribution in the plate.
- 25. (a) Find the Fourier cosine transform of e^{-4x}. Deduce that (10) 5 3 $\int_{0}^{\infty} \frac{\cos 2 x dx}{x^{2} + 16} = \frac{\pi e^{-8}}{8} \text{ and } \int_{0}^{\infty} \frac{x \sin 2 x dx}{x^{2} + 16} = \frac{\pi e^{-8}}{2}.$ (OR)
 - (b) Solve using Z-transforms technique the difference equation (10) 5 3 $y_{n+2} - 7y_{n+1} + 12y_n = 2^n \text{ with } y_0 = 0 = y_1$

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.26 is compulsory)

Marks CO RBT LEVEL

3

26. Find the Fourier cosine transform of $e^{-a^2x^2}$ and hence show that $e^{\frac{-x^2}{2}}$ is self- (10) 5 3 reciprocal with respect to the Fourier cosine Transform.
