Q. Code: 410583

Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Second Semester

MA22253 - MATHEMATICS FOR DATA SCIENCE

(Artificial Intelligence and Data Science)

(Regulation 2022)

		(Regulation 2022)						
TIME:3 H		OURS MAX. MARK STATEMENT	KS: 100 rbt					
OUTCOMES				LEVEL				
CO		Perform operations on various discrete structures such as sets, functions and relation		3 3				
CO2		Test the logic of a programme, having acquired knowledge of the necessary concepts.						
CO3		Identify structures on many levels as an application of the concepts and properties of						
CO4		algebraic structures.						
		Apply the basic notions of groups, rings, fields which will be used to solve relate problems.						
CO)5	Execute the simplification of Boolean algebraic expression.		3				
		PART- A(20x2=40Marks)	CO	RBT				
		(Answer all Questions)		LEVEL				
1.	Evalu	uate $\{1,2\} \times \{a,b,c\} \& \{a,b,c\} \times \{1,2\}\}$. Are they equal?	1	2				
2.	Iet A	$A = \{a, b, c\}$ and $B = \{b, c, d\}$. Find $A \oplus B$.	1	2				
2. 3.		$A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4\}$. Which ordered pairs are in the relation R	1	2				
			-	-				
	repres	esented by the matrix $\mathcal{M}_{\mathcal{H}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$						
4.		$X = \{1, 2, 3, 4\} \& R : X \to X \text{ be given by } R = \{(1, 2), (2, 3), (3, 4), (4, 1)\}.$ Form the	1	2				
		position function f^2 .						
5.	•	fy the statement $(P \lor Q) \to P$ is a tautology.	2	2				
6. 7	•	ate the statement "For all real number x, if $x>3$ then $x^2>9$ ".	2 2	2 2 2				
7.		e the converse and contra-positive of the conditional statement 'If there is a will, there is a way'.	Z	Z				
		·	_	_				
8.	-	ess the premises in symbolic form "Every student in this school is good at studies"	2	2				
9. 10		the inverse of 2 in the group $\{0,1,2,3\}$ under multiplication mod 4.	3 3	2 2				
10.	Find	the order of [2] and [4] in $(Z_8, +_8)$	3	2				
11.	Verif	fy that $f:(G,+) \to (G',x)$ defined by $f(a) = 2^a \forall a \in R$ is a homomorphism.	3	2				
12.			3	2				
	Check	ek whether the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$ is odd or even?						
13.	What	t is the degree of the polynomial $f(x) = 8x^3 + 6x^2 + 4x - 8$ over Z_4	4	2				
14.	What	t is the remainder when $f(x) = 2x^3 + 3x^2 + x + 2 \in Z_6[x]$ is divided by $x - 2$	4	2				
15.	Is x^2 -	-4 over Q irreducible? Find the roots of the polynomial over field Q.	4	2				
16.	What	t are the units in the $ring(Z, +, x)$	4	2				
17.	Deter	rmine whether the poset ({1,2,3,4,6,8,12,24},/) is a Lattice.	5	2				
17.		t are the atoms of $\{S_{36}, \}$	5	2				
19.		e the Demorgan's law for a Boolean algebra.	5	2				
20.		uate the expression $X = a \overline{[(b+c)+\overline{d}]}$ for a=0.b=0,c=1,d=1.	5	2				
Page 1 of 2								

Q. Code: 410583

	<u>PART- B (5x 10=50Marks)</u>	Marks	CO	RBT LEVEL				
21 (a)	If the relation R and S is given by $P = \{(1,2), (2,4), (3,3)\}, Q = \{(1,3), (2,4), (4,2), (4,2)\}$ find $(i)P \cup Q \ (ii)P \cap Q \ (iii)P - Q \ (iv)Q - P \ (v)P \oplus Q \ .$ Also verify that $D(P \cup Q) = D(P) \cup D(Q) \& R(P \cap Q) \subseteq R(P) \cap R(Q)$	(10)	1	3				
(b)	(OR) Let $f(x) = x + 2$, $g(x) = x - 3$, $h(x) = 2x$ $\forall x \in R$. Where R is the set of real numbers. Find $f \circ g, g \circ f, f \circ f, g \circ g, f \circ h, g \circ h, h \circ g, h \circ f, f \circ g \circ h, h \circ g \circ f$	(10)	1	3				
22.(a)	Obtain the PDNF and PCNF of the statement $(p \rightarrow (q \land r)) \land (\neg p \rightarrow (\neg q \land r))$	(10)	2	3				
	(OR)							
(b)	Show that S is a valid inference from the premises $P \rightarrow \neg Q, Q \land R, \neg S \rightarrow P$ and $\neg R$	(10)	2	3				
23. (a)	Show that (Z,*) is a group where $a * b = a + b + 1$.	(10)	3	3				
(OR)								
(b)	Determine $(i) \alpha \beta$ $(ii) \alpha^{-1}$ and $\beta^{-1} (iii) (\alpha \beta)^{-1} (iv) (\beta \alpha)^{-1} (v) O(\alpha \beta)$ In a	(10)	3	3				
	group S ₅ ={1,2,3,4,5} where $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \& \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}$							
24. (a)	Find $[100]^{-1}$ in the ring Z_{1009} .	(10)	4	3				
	(OR)							
(b)	If $f(x) = 3x^2 + 4x + 2 \in Z_7[x]$, $g(x) = 6x^4 + 4x^3 + 5x^2 + 3x + 1 \in Z_7[x]$, then $q(x)$ and $r(x)$, when $g(x)$ is divided by $f(x)$.	(10)	4	3				
25. (a)	Let S_{42} be the set of positive divisors of 42. If \leq is the relation of divisibility, prove that (S_{42}, \leq) is a Poset. Draw the Hasse diagram of the Poset.	(10)	5	3				
(b)	(OR) Let $B = \{1,2,3,5,6,15,30\}$, be the divisors of 30 with the divisibility as order.	(10)	5	3				
	For any $a, b \in B$, $a + b = lcm(a,b)$, $a \cdot b = gcd(a,b)$, $a' = \frac{30}{a}$, Verify that							
	(B, +, ., ', 1, 30) is a Boolean Algebra.							
	<u>PART- C (1x 10=10Marks)</u>	Mark	s CC) RBT LEVEL				
26	(Q.No.26 is compulsory)	(10)	~					
26.	Prove the equivalence $\neg p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \lor r)$	(10)	2	3				
