	Q. Coo	Code:883629		
	Reg. No.			
	B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024			
	Second Semester			
	MA22252 – APPLIED MATHEMATICS II FOR MARINE ENGINE (Marine Engineering)	CERS		
	(Regulation 2022)			
	ME: 3 HOURS MAX. N	IARKS:	100 DBT	
OUTCO	KSE STATEMENT DMES		LEVEL	
CC	Apply the basic concepts of ordinary differential equations and its applica	itions in	3	
CC	Apply various techniques in solving differential equations.		3	
CC	3 Solve gradient, divergence and curl of a vector point function and related ic evaluation of line, surface and volume integrals using Gauss, Stokes and theorems	lentities, Green's	3	
CC	 4 Recognize fundamental properties of analytic functions and construct simple comaps. 	onformal	3	
CC	Apply Laplace transforms to solve differential equations.		3	
	PART- A (20 x 2 = 40 Marks)			
	(Answer all Questions)	CO	RRT	
1		1	LEVEL	
1.	Determine the order and degree of the differential equation $2023 \frac{d^4 y}{dx^4} - 2024 x^{72} \left(\frac{dy}{dx}\right)^8 - xy = 0$	1	2	
2.	Form the differential equation of $y=A\cos 2x+B\sin 2x$	1	2	
3.	Solve $(9+x^2)\frac{dy}{dx}=16+y^2$	1	2	
4.	Find the integrating factor of $\frac{dy}{dx} + xy = x^2$	1	2	
5.	Solve $(D^2 + 4D + 4) y = 0$	2	2	
6.	Find the Particular Integral of $(D^2+1)y=e^{2x}$.	2	2	
7.	Solve $(x^2D^2 + xD + 1)y = 0.$	2	2	
8.	Transform the following equation into a differential equation with constant coefficient $[(x+1)^2 D^2 + (x+1) D + 1] y = 2 \sin[\log(x+1)]$	as 2	2	
9.	Find the unit normal to the surface $x^2 + y^2 - z = 10$ at (1,2,1).	3	2	
10.	Find λ such that $\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+\lambda z)\vec{k}$	3	2	
11.	is solenoidal. Prove that $\vec{F} = (yz)\vec{i} + (zx)\vec{j} + (xy)\vec{k}$ is irrotational.	3	2	
12.	Find the normal derivative of $\varphi = xy z^2$ at (1,0,3).	3	2	

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

		Q. Code	:8830	529
13.	Show that an analytic function with constant real part is constant.		4	2
14.	Find the invariant points of $f(z) = z^2$		4	2
15.	Show that the function $f(z) = \overline{z}$ is nowhere differentiable.		4	2
16.	Prove that $u=2x-x^3+3xy^2$ is harmonic.		4	2
17.	Find L $\left[e^{-2t}\sin 3t\right]$		5	2
18.	Find $L^{-1}\left(\frac{1}{(s+1)^4}\right)$		5	2
19.	Verify the initial value theorems for $f(t)=3e^{-2t}$		5	2
20.	Find $L^{-1}\left(\frac{4}{(s+2)^2+16}\right)$		5	2
	PART- B (5 x 10 = 50 Marks)	Marks	со	RBT
21. (a)	Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$	(10)	1	LEVEL
(b)	(OR) Find the orthogonal trajectory of the cardioids $r = a(1 - cos\theta)$	(10)	1	3
22. (a)	Solve $Dx+y=\sin 2t$; $-x+Dy=\cos 2t$.	(10)	2	3
(b)	(OR) Solve $(D^2 + a^2)y = \tan ax$ by method of variation of parameter.	(10)	2	3
23. (a)	Show that $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational vector and find its scalar potential.	(10)	3	3
(b)	(OR) Verify Green's theorem in the $XY \int_{c}^{c} [(xy+y^2)dx+x^2dy]$ where C	(10) is	3	3
	the boundary of the common area between $y - x$ and $y - x$.			
24. (a)	Find the image if $ z-2i =2$ under the transformation $w=\frac{1}{z}$	(10)	4	3
(b)	(OR) If $f(z)=u(x, y)+iv(x, y)$ is an analytic function, the curves of the family $u(x, y)=c_1$ and $v(x, y)=c_2$ cut orthogonally, where c_1 and c_2 are varying constants.	(10)	4	3
25. (a)	Find the Laplace transform of the Half-sine wave rectifier function	(10)	5	3

Marks

$$f(t) = \begin{cases} \sin\omega t \text{ for } 0 < t < \frac{\pi}{\omega} \\ 0 \text{ for } \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$

(OR)

(b) Apply convolution theorem to evaluate $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$. (10) 5 3

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

- CO RBT LEVEL
- 26. Find the bilinear transformation that maps the points -2,0,2 onto 0,i,-i (10) 4 3 respectively.