	Q. Code:47746	477460					
	Reg. No.						
	B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester MA22251 – APPLIED MATHEMATICS II (Common to all Branches Except Marine)						
Т	(Regulation 2022) IME: 3 HOURS MAX. MAR	KS: 100					
CO	D STATEMENT						
CO 1	Interpret the fundamentals of vector calculus and execute evaluation of line, surface and volume integrals using Gauss, Stokes, and Green's theorems.	e 3					
CO 2	Solve first order linear, homogeneous differential equations and use series solution method to solve second order differential equations.	n 3					
03	Inverse Laplace transforms.	id 3					
CO 4	Explain Analytic functions and Categorize transformations.	3 W 3					
005	integral theorem and Cauchy's residue theorem.	ly 3					
	PART- A (20 x 2 = 40 Marks) (Answer all Questions)						
1		CO RBT LEVEL					
1.	Find the values of a, b, c so that $A = (x + y + az)\vec{i} + (bx + 2y - z)\vec{j} + (-x + cy + 2z)\vec{k}$ is irrotational.	1 2					
2.	Find a unit normal to the surface $x^2 y + 2xz^2 = 8$ at the point (1,0,2).	1 3					
3.	Prove that $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative force field.	1 3					
4.	Evaluate $\iint_{S} \vec{r} \cdot \hat{n} ds$, where S is a closed surface.	1 2					
5.	Find the particular integral of $(D^2 + 1) y = \cos (2x-1)$.	2 2					
6.	Transform the equation $(x^2 D^2 + x D) y = x$ into a differential equation with constant coefficients.	2 2					
7.	$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}.$	2 3					
8.	Check whether the differential equation is exact or not	2 2					
	$(5x^4+3x^2y^2-2xy^3)dx+(2x^3y-3x^2y^2-5y^4)dy=0.$						
9.	Give two examples for which the Laplace transform does not exist.	3 2					
10.	Find Laplace Transform of $e^{-5t}t^7$	3 2					

11. $L(f(t)) = \frac{s+2}{s^2+4}, \text{ find } \int_0^\infty f(t)dt$

Q. Code:477460

12.
$$\int_{H} \int_{1}^{L(f(1))} = \frac{1}{x(x+a)}, \text{ find } f(0) \& f(x)$$
13. Check whether $f(z) \& e^{x}$ (cos $y - \& i \text{ sin } y$) is analytic or not.
14. Check whether the function $u = 2x - x^{3} + 3x y^{2}$ is harmonic or not.
15. Find the image of $|z - 2i| - 2$ under the mapping $w = \frac{1}{z}$.
16. $4 = 2$
17. Fvaluate $\int_{1}^{1} \frac{dx}{z + 4}$, where C is the circle $|z| = 2$.
18. Expand $\frac{1}{z-2}$ at $z \& 1$ in Taylor's series.
19. Find the nature of the singular points of $\frac{e^{x}}{z^{2} + 4}$.
20. Find the directional derivative of $\frac{xe^{x}}{z^{2} + 4}$.
21. (a) Find the directional derivative of $\frac{xe^{x}}{z^{2} + 4}$.
21. (b) Verify Stoke's theorem for $\vec{p} = |x^{2} - y^{2}| + 2xy$ in the rectangular region in the xy (10) 1. 3 plane bounded by the lines $x = 0, x = a, y = 0, y = b$.
21. (a) Solve $(D^{1}-3D+2) y = 2\cos(2x+3)+2e^{x}$.
(b) Solve $[(1+x)^{2}D^{2} + (1+x)D + 1] y = 2 \sin[\log(1+x)]$.
(c) (c) (i) $y = 2$ at $z = 2$.
(c) (c) $\frac{x}{(x^{2} + y^{2})^{2}}$ using convolution theorem.
(c) 3 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v , and $f(z) = \frac{x}{2\pi/a}$.
(c) (c) $\frac{x}{(x^{2} + x^{2})^{2}}$ using convolution theorem.
(c) 3 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v , and $f(z) = u + iv$ is analytic.
(c) (a) (b) Find the inverse Laplace transform of $\frac{x}{(x^{2} + a^{2})^{2}}$ using convolution theorem.
(c) 3 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v , and $f(z) = u + iv$ is analytic.
(c) (a) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v , and $f(z) = u + iv$ is analytic.
(c) (a) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v and $f(z) = u + iv$ is analytic.
(c) (a) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v and $f(z) = u + iv$ is analytic.
(c) (b) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v and $f(z) = u + iv$ is analytic.
(c) (c) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v and $f(z) = u + iv$ is analytic.
(c) (c) 4 a $\frac{3}{(x^{2} + y^{2})^{2}}$, then find v and $f(z) = 2\pi/a$.

Q. Code:477460

Marks

C O RBT

25. (a)	Using	Cauchy's	integral	formula,	evaluate	$\int_{C}^{\Box} \frac{dz}{(z+1)^2(z-2)}$,	(10) 5	3
	where C is $ z = \frac{3}{2}$.								
	(OR)								

(b) Using Cauchy's residue theorem, evaluate $\int_{c}^{\Box} \frac{z-1}{(z-2)(z+1)^2} dz$, (10) 5 3 where C is |z-i|=2. <u>PART-C (1 x 10 = 10 Marks) (Q.No.26 is compulsory)</u>

26. Prove that $(y^2 \cos x + z^3)\dot{i} + (2y\sin x - 4)\dot{j} + 3xz^2\dot{k}$ is irrotational and find its scalar (10) 1 3 potential.