Reg. No.							

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024

First Semester

MA22151 – APPLIED MATHEMATICS-I

(Common to all branches except Marine Engineering)

(Regulation2022)

TI	ME:3 HOURS	MAX. MARKS	: 100
COU OUTCO CO 1	Solve eigen value problems in matrices. Apply the basic notion of calculus in Engineering problems and to the		RBT LEVEL 3
CO 3	problems.	n Engineering	3
CO 5			3
1.	PART- A(20x2=40Marks) (Answer all Questions) $ \begin{vmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{vmatrix}. $ Write down the quadratic form corresponding to the matrix	co 1	RBT LEVEL 2
2.	Find the index and signature of the quadratic form $x_1^2 + 2x_2^2 - 3x_3^2$.	1	2
3.	If the sum of two Eigen values and trace of a 3×3 matrix A are equal, find the vA .	value of 1	2
4.	Find the Eigen values of $A-5I$ if $A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 2 & 9 \\ 0 & 0 & 5 \end{pmatrix}$.	1	2
5.	Find the radius of curvature of a curve $y = \log (\sec x)$ at any point (x, y) .	2	3
6.	If $\overline{x} = \frac{c}{a}\cos^3 t$, $\overline{y} = \frac{-c}{b}\sin^3 t$ is the centre of curvature of a curve, find its evolute.	2	2
7.	Find the curvature of the straight line at any point on it.	2	2
8.	$\frac{x}{a}\cos\theta + \frac{y}{a}\sin\theta = 1, \ \theta \ being \ the \ parameter.$ Find the envelope of $\frac{x}{a}$	2	3
9.	If $x = r\cos\theta$, $y = r\sin\theta$, then prove that $JJ' = 1$.	3	2
10.	If $u = f(x-y, y-z, z-x)$, find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.	3	2

Marks

RBT

- 11. Expand xy+2x-3y+2 in powers of (x-1) and (y+2) using Taylor's theorem up to first degree terms.
- 12. If u, v, w are functions of x, y, z and $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$, find the value of $\frac{\partial(2u, 2v, 2w)}{\partial(x, y, z)}$.
- 13. Evaluate: $\int x e^x dx$.
- 14. $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x dx$ Evaluate: $\frac{-\pi}{2}$.
- 15. Evaluate: $\int_{0}^{1} x^{2} e^{5x} dx$.
- 16. Evaluate: $\int \log x dx$
- 17. $\int_{0}^{a} \int_{0}^{b} \frac{dxdy}{xy}$
- 18. $\int_{1}^{1} \int_{1}^{2-y} xy \, dx dy$ 5 2
- Change the order of integration in 0 y .

 19. Find the area of a circle of radius 'a' by double integration in polar coordinates.

 5 3
- 20. $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz \, dxdydz$ Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz \, dxdydz$.

PART- B (5x 10=50Marks)

21. (a) Verify Cayley Hamilton Theorem and hence find A^4 if (10) 1 3

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

(OR)

- (b) Reduce the quadratic form $x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 + 2x_2x_3$ into canonical form using orthogonal transformation. (10) 1 3
- Find the center of curvature of the curve $y=x^3-6x^2+3x+1$ at the point (1,-1)

(OR)

Q. Code:924832

3

- Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters a and b are connected by the relation $|i|ab=c^2|ii|a+b=c$.
- 23. (a) Find the Maximum Value of $x^m y^n z^p$ when x + y + z = a. (10) 3

(OR)

- (b) $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}.$ (5) 3 3
 - (ii) If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ Find $x u_x + y u_y + z u_z$ (5) 3
- 24. (a) Using Disk method find the volume of the solid generated by revolving the (10) 4 3 region between the y-axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$ about the y-axis. Also draw the region and solid of revolution.

(OR)

- (b) Using Washer method find the volume of the solid generated by revolving (10) 4 3 the region bounded by $y = \sqrt{x}$ and $y = x^2$ about the x-axis. Also draw the region and solid of revolution.
- 25. (a) $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ Change the order of the integration and hence evaluate (10) 5 3

(OR)

(b) By converting into polar coordinates, evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy$. (10) 5 3

<u>PART- C (1x 10=10Marks)</u>

(Q.No.26 is compulsory)

26. Find the Eigen values and Eigen vectors of $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.
