Q. Code:789333

Reg. No.

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

MA18454 – PROBABILITY AND RANDOM PROCESSES

(Electronics and Communication Engineering)

(Regulation 2018 /2018A)

TIME:3 HOURS

MAX. MARKS: 100

- **CO1** Reproduce and explain the basic concepts such as probability and random variable and identify the distribution.
- CO2 Acquire skills in handling situations involving more than one random variable.
- CO3 Study the characterize phenomena with respect to time in probabilistic manner.
- CO4 Apply the relationship within and between random processes.
- **CO 5** Apply the response of random inputs to linear time invariant systems.

PART- A(10x2=20Marks)

(Answer all Questions)

	(Answer an Questions)	CO	RBT LEVEL
1.	A continuous random variable X has probability density function $f(x) = k$ (1+x), in 2 < x <5. Find P(3 <x <4).<="" td=""><td>1</td><td>2</td></x>	1	2
2.	The mean of a binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	1	2
3.	The joint probability density function of a two-dimensional random variable (X, Y) is given by $f(x, y) = k (x^3y + xy^3)$, $0 \le x \le 2$; $0 \le y \le 2$. Find the value of k	2	2
4.	If $F(x,y)=i[(1-x^2)(1-y^2)$ if $x,y \ge 0$ if $y,y \ge 0$ i	2	2
5.	function. If the random process $X(t) = \cos(\omega t + \theta)$ where θ is uniformly distributed in the interval $(-\pi, \pi)$. Find E[X (t)].	3	2
6.	State the four types of Stochastic Processes.	3	1
7.	Given the power spectral density $S_{xx}(\omega) = \frac{1}{4 + \omega^2}$, find the average power of the	4	2
	nrocess		

process.

CO

1

RBT LEVEL

3

Marks

8.	The power spectral density of a random process X(t) is given by	4	2
	$S_{XX}(\omega) = [\pi, \omega < 1 \land i 0$, otherwise Find its autocorrelation.		
9.	Prove that system $y(t) = t x(t) - x (t - 1)$ is time invariant.	5	2
10.	Define a system. When it is called a linear system?	5	2

PART- B (5x 14=70Marks)

11. (a) (i) For the triangular distribution $f(x) = \begin{cases} x, 0 < x \le 1 \\ 2 - x, 1 \le x < 2 \\ 0, otherwise \end{cases}$ (7)

variance and the moment generating function.

(ii) The time (in hours) required to repair a machine is exponentially (7) 1 3 distributed with parameter λ = 1/2. What is the probability that the repair time exceeds 2hours? What is the conditional probability that a repair takes at least 10hours given that its duration exceeds 9hours?

(**OR**)

(b) (i) A discrete random variable X has the following probability (7) 1 3 distribution.

Х	0	1	2	3	4	5	6	7	8
P(X = x)	a	3a	5a	7a	9	11a	13	15a	17a
					a		а		
\mathbf{D}^{\prime} 1 \mathbf									

Find (i) the value of 'a' (ii) $P(X \le 3)$ (iii) $P(0 \le X \le 3)$ and (iv) $P(X \ge 3)$.

(ii) Trains arrive at a station at 15-minute intervals starting at 4 am. If a (7) 1 3 passenger arrives at the station at a time that is uniformly distributed between 9.00 and 9.30 am, find the probability that he has to wait for the train for (i) less than 6 minutes and (ii) more than 10 minutes.

12. (a) Find the correlation coefficient ρ_{xy} for the following joint density function (14) 2 3 f(x,y)=i(x+y, 0 < x < 1, 0 < y < 1)

4

(OR)

- (b) The joint probability mass function of (X,Y) is given by P(x, y) = (14) 2 3 k(2x+3y), x = 0,1,2; y = 1,2,3. Find all marginal probability distributions. Also find the probability distribution of (X+Y).
- 13. (a) Suppose that customers arrive at a bank according to Poisson process with (14) 3 3 mean rate of 3 per minute. Find the probability that during a time interval of two minutes (i) exactly 4 customers arrive (ii) greater than 4 customers arrive (iii) fewer than 4 customers arrive and (iv) no customers arrive.

(OR)

(b) Suppose X(t) is a normal process with mean $\mu(t)=3$ and (14) 3 3 $C(t_1,t_1)=4e^{-0.2|t_1-t_2|}$. Find (i) $P[X(5)\leq 2]$ and (ii) $P[|X(8)-X(5)|\leq 1]$.

14. (a) (i) If the power spectral density of a WSS process is given by (7) 4 3

$$S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|); |\omega| \le a \\ \frac{b}{a} (0; |\omega| > a \end{cases}, \text{ find its autocorrelation function of the } \\ \text{process.} \end{cases}$$

(ii) If {X(t)} is a WSS process with autocorrelation $R_{XX}(\tau)$ and if Y(t)=X(t+a)-X(t-a). Show that $R_{YY}(\tau)=2R_{XX}(\tau)-R_{XX}(\tau+2a)-R_{XX}(\tau-2a)$. (OR)

(b) Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and (14) $Y(t) = 2\cos\left(\omega t + \theta - \frac{\pi}{2}\right)$, where θ is a random variable uniformly distributed $in(\theta, 2\pi)$. Prove that $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)}$.

15. (a) If
$$[N(t)]$$
 is a band limited White noise with a power spectral density (14) 5 3
 $S_{NN}[\omega] = i \left| \frac{N_0}{2} \right|$, for $|\omega - \omega_0| < \omega_B i i i$. Find the autocorrelation of .

(**OR**)

(b) A circuit has unit impulse response given by (14) 5 3

 $h(t) = \begin{cases} \frac{1}{T}; & 0 \le t \le T \\ 0; & elsewhere \end{cases}$. Evaluate $S_{YY}(\omega)$ interms of $S_{XX}(\omega)$

PART- C (1x 10=10Marks) (Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	Two regression lines are $4x-5y + 33 = 0$ and $20x - 9y = 107$. Find the means	(10)	2	3
	of x and y. Also find the value of the correlation coefficient.			
