Q. Code:277816

Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

MA18452 – PARTIAL DIFFERENTIAL EQUATIONS AND **COMPUTATIONAL METHODS**

(Automobile Engineering) (Regulation 2018 / 2018A)

TIME: 3 HOURS

- **CO1** Students will be able to identify and solve partial differential equations analytically.
- **CO 2** Students will be familiar with the application of the Fourier series concept in Boundary value problems.
- **CO 3** Students will be familiar with the techniques of solving algebraic or transcendental equations and linear system of equations.
- **CO 4** Students will acquire the knowledge of Interpolation and Approximation and Curve fitting.
- **CO 5** Students will be aware of solving partial differential equations numerically.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEI
1.	Form partial differential equation by eliminating arbitrary constants a and b from	1	2
	z = ax + by + ab.		
2.	Solve $p+q=1$.	1	3
3.	Classify the partial differential equation $u_{xx} + 3u_{xy} + 4u_{yy} + u_x = 0$.	2	2
4.	The ends A and B of a rod 20 cm long have the temperature at $30^{\circ}C$ and $80^{\circ}C$ until	2	2
	steady state conditions prevail. Find the steady state temperature.		
5.	Find an iterative formula to find \sqrt{N} , where N is a positive number by Newton-	3	2
	Raphson method.		
6.	State the sufficient condition for Gauss-Jacobi method to converge.	3	1
7.	What is the Lagrange's formula to find y if three sets of values $(x_0, y_0), (x_1, y_1)$, and	4	1
	(x_2, y_2) are given?		
8.	When Newton's forwarded interpolation formula is used?	4	2
9.	Write the finite difference form of $u_{xx} + u_{yy} = 0$.	5	1
10.	Write an explicit formula to solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ numerically.	5	1

MAX. MARKS: 100

Q. Code:277816

PART- B (5 x 14 = 70 Marks) Marks СО RBT LEVEL 11. (a) (7) 3 (i) 1 Form partial differential equation by eliminating arbitrary functions Iand φ from $z = f(x+ct) + \varphi(x-ct)$. Solve (y-z)p-(2x+y)q=2x+z. (ii) 3 (7) 1 (**OR**) Find the singular solution of $z = px + qy - 2\sqrt{pq}$. **(b)** (7) 1 3 (i) Solve $(D^3 - 2D^2D')z = 2e^{2x} + 3x^2y$. (ii) (7) 1 3 A tightly stretched string with fixed end points x=0 and x=100 is 3 12. (a) (14) 2 initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity 3x(100-x), find the displacement of any point on the

(**OR**)

(b) An infinitely long rectangular plate is of width 10 cm. The temperature (14) 2 3

along the short edge y = 0 is given by $u=i \left[20 \chi \quad \text{for } 0 \le \chi \le 5 \text{ i.i.i.} \right]$. If all the other three edges are kept at zero temperature, find the steady state temperature at point on it.

string at a distance from one end at any time t.

- 13. (a) (i) Find by Newton-Raphson method, the root of the equation $e^x = 4x$, (7) 3 3 correct to three places of decimals.
 - (ii) Solve the system of equations (7) 3 3 x+y+54z=110,27x+6y-z=85,6x+15y+2z=72 using Gauss-Seidel iteration method.

(**OR**)

- (b) (i) Solve the system of equations (7) 3 3 x+3y+3z=16, x+4y+3z=18, x+3y+4z=19 using Gauss-Jordan method.
 - (ii) Using Power method to find the dominant Eigenvalue and the (7) 3 3

corresponding Eigenvector of the matrix
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$$
.

14. (a) (i) Using Lagrange's interpolation formula, find the value corresponding (7) 4 3 to x=10 from the following table:

x	5	6	9	11
у	12	1	14	16
		3		

(ii) A third degree polynomial passes through $(0,1), (1,-1)(2,-1) \land (3,2)$. Find its value at x=4 using Newton's forward interpolation formula.

(**OR**)

(b) (i) Find the cubic function from the following table using Newton's (7) 4 3 divided difference formula.

X	0	1	3	4
f(x)	1	4	40	8
				5

(7) 4 3

(ii) Apply Newton's backward formula to find a polynomial of degree three which includes the following values of x and y.

x	3	4	5	6
y	6	24	60	120

15. (a) Solve the Poisson's equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square (14) 5 3 mesh with sides x=0, y=0, x=3, y=3 with u=0 on the boundary and mesh length 1 unit.

(**OR**)

(b) (i) Solve by Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, t > 0,$ (7) 5 3

Q. Code:277816

u(x,0)=u(0,t)=0, u(1,t)=100t. Compute u for one step with $h=\frac{1}{4}$.

(ii)
$$4\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$
 with boundary conditions
 $u(0,t) = u(4,t) = 0, u(x,0) = x(4-x)$ and $u_t(x,0) = 0$.
(7) 5 3

$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(0 \text{ No } 16 \text{ is compulsory})}$

16.

(Q.No.16 is compulsory)		60	DDT
	Marks	CO	KB1 LEVEL
Using Gauss-Jordan method find the inverse of the matrix	(10)	3	3
$(2 \ 2 \ 3)$			
$A = \begin{vmatrix} 2 & 1 & 1 \end{vmatrix}.$			
$1 \ 3 \ 5$			
