Q. Code:941507

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester **MA18352 – DISCRETE MATHEMATICS**

(Common to CSE and INT) (Regulation 2018/2018A)

	(1			
TIN coui	ME: 3 HOURS rse	STATEMENT	MAX. MARKS: 100	
OUTCOMES		to test the lugidity of a program		LEVEL 2
CO1	Describe and apply the count	ing principles in computer simulations		3
CO 2	Develop graph theory tools for	or day-to-day applications.		3
CO 4	4 Expose the concepts and properties of algebraic structures such as groups, rings fields.			3
CO 5	Categorize Boolean algebraic the logic of a program.	structures on numerous levels, the concep	ots needed to test	3
	PA	RT- A (10 x 2 = 20 Marks)		
		(Answer all Questions)	00	DDT
			CO	KB1 LEVEL
1.	Construct a truth table for the comp	bound proposition $p \oplus (p \lor q)$.	1	2
2.	State the converse, inverse and contrapositive of the conditional statement: 1			2
	I go to the beach whenever it is a su	nny summer day.		
3.			2	2
	Find $\left[\frac{1}{2} \right] + \left[\frac{5}{2} \right] + \frac{1}{2} \right]$.			
4.	What is the generating function for	the sequence 1,1,1,1,1,1?	2	2
5.	Find the adjacency matrix of the fol	llowing graph:	3	2
6.	How many vertices does a 4-regular	r graph with 10 edges have?	3	2
7.	Is the union of two subgroups a subgroup? Justify.		4	2
8.	Find any two cosets of the subgroup $H = \{1, -1\}$ in $G = \{1, -1, i, -i\}$ under the binary operation multiplication.		the binary 4	2
9.	Consider a relation $R = \{(1,1), i \text{ defin} X = \{1,2,3\}$. Is it symmetric?	ned on a set	5	2

Q. Code:941507

10. Consider the Poset A = $\{15,5,30\}$ under the relation "less than or equal to". Verify 5 2 whether (A, \leq) is a totally ordered set.

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Find the PDNF and PCNF of the following compound proposition:	(14)	1	3
	$[P \to (Q \land R)] \land [\neg P \to (\neg Q \land \neg R)].$			
	(OR)			
(b)	Let $P(x)$: x is a baby, $Q(x)$: x is logical, $R(x)$: x is able to manage a		1	3
	crocodile, $S(x)$: x is despised. Suppose that the domain consists of all			
	people. Express the following statements using quantifiers, logical			
	connectives, $P(x)$, $Q(x)$, $R(x)$ and $S(x)$:			
	(i) Babies are illogical.			
	(ii) Nobody is despised who can manage a crocodile.			
	(iii) Illogical persons are despised.			
	(iv) Babies cannot manage crocodiles.			
	(v) Does (iv) follow from (i), (ii) and (iii)?			
12. (a)	Using mathematical induction, prove that	(14)	2	3
	$1^2 - 2^2 + 3^2 - \dots + (-1)^{n-1} n^2 = (-1)^{n-1} \frac{n(n+1)}{2}$ where 'n' is positive integer.			
	(OR)			

- (b) How many positive integers not exceeding 1000 are divisible by any of the (14) 2 3 integers 3,5,7,11?
- 13. (a) Find the in-degree and out-degree of each vertex in the following digraph (14) 3 3 and hence verify Handshaking Theorem for digraphs:

Q. Code:941507

(OR)

(b) Verify whether the graphs G and H are isomorphic: (14) 3 3

14. (a) Find all the subgroups of i(14) 4 3(OR)

- (b) Show that i is an abelian group where * is defined by (14) 4 3 $a*b=\frac{ab}{2}, \forall a,b \in Q^{+i.i}$
- 15. (a) Let $S = \{a, b, c\}$. Draw the Hasse diagram of $(\wp(S), \subseteq)$. Show that it is a (14) 5 3 poset.

(OR)

(b) Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and the relation R is "divisor" on D_{30} . (14) 5 3

(i) Draw the Hasse diagram.

- (ii) Find all the lower bounds of 10 1nd 15.
- (iii) Find the glb of 10 and 15.

Marks CO

RBT

- (iv) Find all the upper bounds of 10 and 15.
- (v) Find the lub of 10 and 15.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

				LEVEL
16.	Construct the truth table for $(P \leftrightarrow Q) \leftrightarrow (R \leftrightarrow S)$.	(10)	1	3
