Q. Code:990564

Reg. No.							

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester MA18351 – ENGINEERING MATHEMATICS-III

(Common to All Branches except MR)

(Regulation 2018 & 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

CO

прт

- **CO 1** Express proficiency in handling higher order Partial differential equations.
- **CO 2** Acquire the skill in examining a signal in another domain rather in the original domain by handling Full and Half Range Fourier Series.
- **CO 3** Develop skills in classification, formulation, solution, and interpretation of PDE models.
- CO 4 Develops the skill of conversion between time domain to frequency domain using the concept of Fourier Transforms.
- **CO 5** Apply the systematic method for finding the impulse response of LTI systems described by difference equations: partial fraction expansion.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1	Form the PDE of the following by eliminating arbitrary constants from	1	2
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$		
2	Solve $\sqrt{p} + \sqrt{q} = 1$	1	2
3	Determine the value of a_n in the Fourier series expansion of $f(x) = x^3$ in $-\pi < x < \pi$.	2	2
4	Find the root mean square value of $f(x) = x^2$ in the interval $(0, \pi)$.	2	2
5	The ends A and B of a rod of length 10cm long have their temperature kept at $20^{\circ}c$	3	2
	and $70^{\circ}c$. Find the steady state temperature distribution on the rod.		
6	How many conditions are required to solve $u_t = \alpha^2 u_{xx}$.	3	1
7	If $F[f(x)] = F(s)$, prove that $F[f(ax)] = \frac{1}{ a } F\left(\frac{s}{a}\right)$.	4	1
8	Find the Fourier sine transform of $3e^{-2x}$.	4	2
9	Evaluate $\frac{Z^{-1}\left[\frac{z}{z^2+7z+10}\right]}{z+7z+10}$	5	2
10	Form difference equation from $U_n = a2^{n+1}$.	5	2

PART- B (5 x 14 = 70 Marks)

(Restrict to a maximum of TWO subdivisions)

			Marks	CO	RBT LEVEL
11(a)	(i)	Find the singular integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$	(7)	1	3
	(ii)	Solve $x(y-z)p+y(z-x)q=z(x-y)$	(7)	1	3
11(b)	(i)	(OR) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial xy} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x+y) + e^{x-y}$	(7)	1	3
	(ii)	Form the PDE of the following by eliminating arbitrary functions	(7)	1	3
		$\varphi\left[z^2 - xy, \frac{x}{z}\right] = 0$			
12(a)	(i)	Find the Fourier series expansion of $f(x) = i \pi x$ in $0 \le x \le 1$	(7)	2	3
		in the interval (0, 1).			
	(ii)	Find the Fourier series expansion of $f(x) = x^2$ in $-\pi < x < \pi$.	(7)	2	3
		Hence prove $\frac{\pi^4}{90} = 1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots$			
1 2 (L)		(OR)	(7)	2	2
12(b)	(i)	Find the half range cosine series of $f(x) = (x-2)^2$ in $0 < x < 2$.	(7)	2	3
	(ii)	Find the Fourier series up to second harmonic from the following data.	(7)	2	3
		x 0 1 2 3 4 5 y 9 18 24 28 26 20			
13(a)	A ti	ghtly stretched string with fixed end points $x=0$ and $x=l$ is initially	(14)	3	3
	at re	est in equilibrium position. If it is set vibrating giving each point a			
		$2\pi(1-\pi)$			

velocity $\lambda x(l-x)$, find the displacement of any point on the string at a distance from one end at any time t.

(OR)

13(b) An infinitely long rectangular plate with insulated surfaces is 10 cm wide. (14) 3 3 The two long edges and one short edge are kept at zero temperature while the other short edge x=0 is kept at temperature.

u(x,t) = i | 20y for $0 \le y \le 5iiii$

Find the steady state temperature distribution in the plate.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

Marks СО RBT LEVEL Using partial fractions find inverse Z-transforms of $\frac{z^3+3z}{(z-1)^2(z^2+1)}$ (10) 5 3 16

Q. Code:990564