Reg.No

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Second Semester

MA18252-MATHEMATICS FOR MARINE ENGINEERING-II

(Marine Engineering)

(Regulation 2018 & 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

- **CO1** Understand the concepts of ordinary differential equations in the field of engineering.
- **CO 2** Understand the procedure to solve higher order differential equations and apply real time engineering problems.
- **CO 3** Acquire the concepts of vector calculus for solving problems.
- Understand the concepts of analytic functions which are widely used in marine engineering **CO 4** problems.
- **CO 5** Acquire knowledge in Laplace transforms which are used in efficiently solving the problems that occur in various branches of engineering disciplines.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1	Determine the order and degree of the differential equation	1	2
	$\frac{d^6 y}{d x^6} - 100 x^{62} \left(\frac{d y}{d x}\right)^8 - x y = 0.$		
2	$\frac{dy}{dt} = \frac{1+y^2}{2}$	1	3
	Solve $\frac{dx}{dx} = \frac{1}{1+x^2}$.		
3	Find the Particular Integral of $(D^2-3D+2) y = 2e^x$	2	2
4	Solve $(D^2 - 4D + 4)y = 0$	2	3
5	Find a unit normal to the surface $x^2 y + 2x z^2 = 8$, at the point (1,0,2).	3	2
6	Find λ such that $\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+\lambda z)\vec{k}$ is solenoidal.	3	2
7	Check whether the following function is harmonic or $not, u=2x-x^3 3x y^2$.	4	3
8	Find the fixed points of $w = \frac{2zi+5}{z-4i}$.	4	2
9	Find the Laplace transform of $e^{-5t}t^7$.	5	2
10	Find $L^{-1}\left(\frac{s}{(s+2)^2}\right)$.	5	2

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11(a)	(i)	Check whether the differential equation is exact or not. Hence solve it.	(7)	1	3
		$(5x^{4}+3x^{2}y^{2}-2xy^{3})dx+(2x^{3}y-3x^{2}y^{2}-5y^{4})dy=0.$			
	(ii)	Solve $(x^2 - y^2)dx = xydy$.	(7)	1	3
		(OR)			

11(b)	(i) (ii)	Find the orthogonal trajectory of the cardioids $r = a(1 - cos\theta)$	Q. Cod (7) (7)	le:62 1 1	4950 3 3
		Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$, by variable separable method.			
12(a)		Solve $Dx + y = sint$; $x + Dy = cost$ given that $x=2,y=0$ at $t=0$. (OR)	(14)	2	3
12(b)	(i)	Solve $(x^2D^2 - 2xD - 4) y = x^2 + 2\log x$	(7)	2	3
	(ii)	Solve $(D^2 + a^2)y = \tan ax$ by method of variation of parameter.	(7)	2	3
13(a)		Verify Green's theorem for the following:			
		$\int_{C}^{\Box} (xy + y^2) dx + x^2 dy$, where <i>C</i> is the boundary of the area bounded by <i>y</i>	(14)	3	3
		$=x, y=x^{2}$			
13(b)		(OR) Verify Stoke's theorem for a vector field defined by $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ in the rectangular region in the XOY plane bounded by the lines $x = 0, x = a, y = 0, y = b$.	(14)	3	3
14(a)	(i)	If $u = \log(x^2 + y^2)$, then find v, and $f(z)$ such that $f(z) = u + iv$ is analytic.	(7)	4	3
	(ii)	Find the image if $ z-2i =2$ under the transformation $w=\frac{1}{z}$		4	3
			(7)	4	3
		(OR)			
14(b)		Find the bilinear transformation that maps the points $z = 1$, i, -1 onto the points $w = i$, 0, -i. Hence find the image of $ z < 1$.	(14)	4	3
15(a)	(i)	Find $L\left[\frac{\sin at}{t}\right]$. Hence show that $\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$	(7)	5	3
	(ii)	Apply convolution theorem to evaluate $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$.	(7)	5	3
			()	5	5
		(OR)			
15(b)	(i)	The square-wave function $f(t) = \begin{cases} 1 & when \ 0 < t \le \frac{a}{2} \\ -1 & when \ \frac{a}{2} < t < a \end{cases}$	(7)	5	3
		and $f(t+a)=f(t)$ Find the Laplace transform of $f(t)$.			
	(ii)	Solve the differential equation, $y^{-} = 2y^{+} + y = x^{+}, y(0) = 2, y(0) = 1$ using Laplace transform.	(7)	5	3
		$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.\text{No.16 is compulsory})}$	Marks	CO	RBT
		2	1 11 41'KS	CU	ND I

Q. Code:624950

LEVEL

16 Find the angle between the surfaces, $x^2+y^2+z^2=9 \land z=x^2+y^2-3$ at (2,-1,2).

(10) 3 3
