Reg. No. B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024 First Semester MA18152 – MATHEMATICS FOR MARINE ENGINEERING-I (Marine Engineering)

(Regulation 2018/2018A)

MAX. MARKS: 100

Q. Code:672880

STATEMENT	RBT LEVEL
Apply the basic concepts of analytical geometry in marine engineering problems.	3
Use rules of differentiation to differentiate functions.	3
Apply differentiation to solve maxima and minima problems.	3
Perform integration to compute arc lengths, volumes of revolution and surface areas of revolution.	3
Apply integration to compute multiple integrals, area, moment of inertia, integrals in polar coordinates, in addition to change of order.	3
PART- A (10 x $2 = 20$ Marks)	
	 Apply the basic concepts of analytical geometry in marine engineering problems. Use rules of differentiation to differentiate functions. Apply differentiation to solve maxima and minima problems. Perform integration to compute arc lengths, volumes of revolution and surface areas of revolution. Apply integration to compute multiple integrals, area, moment of inertia, integrals in polar coordinates, in addition to change of order.

	(Answer all Questions)	CO	RBT LEVEL
1.	Find the centre and radius of the sphere $x^2 + y^2 + z^2 - 4x - 8y - 12z - 2 = 0$	1	2
2.	Find the equation of the cone with vertex at the origin and passing through the curve $x^2 + y^2 = 9, z = 3.$	1	2
3.	Find $\frac{dy}{dx}$ if $y = \tan[\log(\tan x)]$	2	2
4.	Find the n th derivative of $\cos(2x+3)$.	2	2
5.	A flat circular plate is heated so that the temperature at any point (x, y) is $u(x, y)=x^2+2y^2-x$. Find the coldest point on the plate.	3	2
6.	Find $\frac{dy}{dx}$ when $x^3 + y^3 = 3 axy$.	3	2
7.	Evaluate $\int \frac{(\log x)^2}{x} dx$	4	2
8.	Find the RMS value of $f(x) = 1 + x^2$ in the interval $[-1,2]$	4	2
9.	$\int_{-\infty}^{3} \int_{-\infty}^{2} \int_{-\infty}^{1} z dz dy dx$	5	2

Evaluate 0 0 0

TIME: 3 HOURS

Q. Code:672880

10.

Sketch the region of integration for
$$\int_{0}^{a} \int_{x}^{a} f(x, y) dy dx$$
 5 2

g g

PART- B (5 x 14 = 70 Marks)						
			Marks	CO	RBT LEVEL	
11. (a)	(i)	Find the equation of the right circular cone whose vertex is the point	(7)	1	3	
		(2, 1, -3), whose axis is parallel to OY and whose semi-vertical angle				
		$_{is}$ 45°				
	(ii)	Show that the plane $2x-2y+z+12=0$ touches the sphere	(7)	1	3	
		$x^{2}+y^{2}+z^{2}-2x-4y+2z=3$ and hence find their point of contact.				
		(OR)				
(b)	(i)	Find the equation of the sphere having the circle	(7)	1	3	
		$x^{2}+y^{2}+z^{2}+10 y-4 z-8=0$, $x+y+z=3$ as a great circle				
	(ii)	Find the equation of the right circular cylinder whose axis is	(7)	1	3	
		$\frac{x}{2} = \frac{y}{3} = \frac{z}{6}$ and radius is 5.				
12. (a)	(i)	Find the n th derivative of $\sin h 2x \sin 4x$	(7)	2	3	
	(ii)	If $y = a\cos(logx) + b\sin(logx)$ then prove that	(7)	2	3	
		$x^2 y_2 + x y_1 + y = 0$.				
		(OR)				
(b)	(i)	Find the Maclaurin's series expansion of $\sin^2 x$ in powers of x as	(7)	2	3	
	far	fra as the terms containing x^6 .				
	(ii)	Trace the curve $y^2(2a-x)=x^3$.	(7)	2	3	
13. (a)	(i)	If $z = f(x, y)$ where $x = r\cos\theta$ and $y = r\sin\theta$, prove that	(7)	3	3	
	. /	$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$				

			Q. Cod	Q. Code:672880		
	(ii)	Find the maximum value of $x^m y^n z^p$ subject to the condition	(7)	3	3	
		x+y+z=a.				
		(OR)				
(b)	(i)	If $w = f(y-z, z-x, x-y)$, prove that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$.	(7)	3	3	
	(ii)	Find the extreme values of the function	(7)	3	3	
		$f(x, y) = x^3 + y^3 - 3x - 12y + 20$				
14. (a)	(i)	Find the first and second moment of area under $y=1+x+x^2$ from $x=0$	(7)	4	3	
		to $x=2$ about y-axis.				
	(ii)	Find the volume of the sphere with radius 'a'.	(7)	4	3	
		(OR)				
(b)			(7)	4	3	
(b)	(i)	$\int x^3 dx$	(7)	4	3	
		Evaluate as ⁰ as limit of sums.				
	(ii)	Find the centroid of the region bounded by $y=x^3$ and $y=\sqrt{x}$.	(7)	4	3	
15. (a)	(i)	$\int \int \int (v^2 + v^2 + z^2) dx dy dz$	(7)	5	3	
	()	Evaluate $\int \int \int (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed		-	-	
		by the sphere $x^2 + y^2 + z^2 = a^2$ by transforming into spherical polar				
		co-ordinates.				
		$\int_{-\infty}^{1} \int_{-\infty}^{2-x} xy dy dx$	(7)	5	3	
	(ii)					
		Change the order of integration and hence evaluate $\int_{0}^{0} x^{2}$				
		(OR)		_		
(b)	(i)	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{1}{\sqrt{1-x^{2}-y^{2}-z^{2}}} dz dy dx$	(7)	5	3	
		-		_		
	(ii)	Find the area common to $y^2 = 4ax$ and $x^2 = 4ay$ using double	(7)	5	3	
		Integration.				
		$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.No.16 \text{ is compulsory})}$				
		(((the to to to the participation f))	Marks	CO	RBT LEVEL	
16.]f 7 ∶	s a function of x and y and y and y are two other variables, such	(10)	3	3	
	11 2 1	S A TUNCTULE ULA ADULY ADULY ADULY ALC INO UDEC VALIADIES SUCO				

16.	If z is a function of x and y and u and v are two other variables, such	(10)	3	
	that $u = lx + my$, $v = ly - mx$, show that			

Q. Code:672880

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right).$$
