Q. Code:577394

Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024 First Semester

MA18151 – ENGINEERING MATHEMATICS – I

(Common to all branches except MR)

(Regulation 2018 / 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

- **CO1** To develop the use of matrix algebra techniques which is needed for practical applications.
- **CO2** To apply the skill to solve statistical problems under correlation and regression and acquire the knowledge for fitting the straight line and parabola.
- **CO3** To apply the concepts of differential calculus to find the evolutes and envelopes of curves.
- CO4 To explore functions of several variables and to find the maxima and minima of functions of two or more variables.
- **CO5** To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Find the sum and product of the Eigens value of the matrix $\begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.	1	2
2.	Find the matrix of the quadratic form $2x_1^2 + 5x_2^2 - 4x_1x_2$.	1	2
3.	Given two regression lines $2y+x=4$ and $x+3y=5$ find σ_x if $\sigma_y=2$.	2	2
4.	Write the normal equations to fit a straight line $y=ax+b$ by the method of least squares.	2	1
5.	Find the curvature of the circle $2x^2+2y^2+5x-2y+1=0$ at any point on it.	3	2
6.	Find the envelope of the family of curves $\frac{x \cos \alpha}{a} + \frac{y \sin \alpha}{b} = 1$ where α is the parameter.	3	2
7.	$Lim i_{x \to 0} i i \frac{x - y}{x + y} i$ Evaluate $y \to 0i x + y$	4	2
8.	If $u = \frac{y^2}{x}$ and $v = \frac{x^2}{y}$ then find $\frac{\partial(x, y)}{\partial(u, v)}$.	4	2
9.	Evaluate $\int_{1}^{2} \int_{-x}^{x\sqrt{3}} xydydx$.	5	3

Q. Code:577394 5 3

СО

RBT

3

3

3

(7)

(14)

2

2

Marks

10. Sketch the region of integration in $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) dx dy.$

PART- B (5 x 14 = 70 Marks)

11. (a)	(i)	Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	(7)	1	LEVEL 3
	(ii)	Use Cayley-Hamilton theorem, to find the value of the matrix given by $A^6 - 5A^5 + 8A^4 - 2A^3 - 9A^2 + 35A + 6I$ where $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}.$	(7)	1	3

(OR)

- (b) Reduce the quadratic form $x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 + 2x_2x_3$ to the canonical form (14) 1 3 through an orthogonal transformation and hence show that it is positive semi-definite.
- 12. (a) (i) Ten students got the following percentage of marks in Physics and (7) 2 chemistry:

Students	1	2	3	4	5	6	7	8	9	10
Marks in Physics	78	36	98	25	7 5	82	90	62	65	39
Marks in chemistry	84	51	91	60	6 8	62	86	58	63	47

Calculate the rank correlation coefficient.

(ii) Fit a parabola, by the method of least squares, to the following data; also estimate y at x=6.

x	1	2	3	4	5
y	5	12	26	60	97

(OR)

(b) Obtain the equations of the lines of regression from the following data:

Х 2 3 4 5 6 7 1 9 8 10 12 11 13 14 Y

Q. Code:577394

13. (a)	(i)	Find the radius of curvature of the cycloid $x=a(\theta+\sin\theta)$,	(7)	3	3
		$y = a(1 - \cos \theta).$			
	(ii)	Find the envelope of $\frac{x}{a^2} + \frac{y}{b^2} = 1$ where a and b are the parameters and	(7)	3	3
		are connected by the relation $a^2+b^2=1$.			
		(OR)			
(b)	(i)	Find the centre of curvature of $y=3x^3+2x^2-3at(0,-3)$.	(7)	3	3
	(ii)	Find the equation of evolutes of the parabola $x^2 = 4 ay$.	(7)	3	3
14. (a)	(i)	If $y = f(x + at) + g(x - at)$, show that $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$ where 'a' is constant.	(7)	4	3
	(ii)	Expand $f(x, y) = \sin(xy)$ in powers of $(x - 1)$ and $(y - \pi/2)$ through quadratic form.	(7)	4	3
		(OR)			
(b)	(i)	Prove $u = x + y + z$, $v = xy + yz + zx$, $w = x^2 + y^2 + z^2$ are functionally dependent and find the functional relationship between them.	(7)	4	3
	(ii)	Using Lagrange's multiplier method, determine the dimensions of a rectangular tank, open at the top, if the surface area is 108 sq.cm.	(7)	4	3
15. (a)	(i)	Evaluate $\iint_{\Box} r^2 dr d\theta$ over the region bounded by the semicircle $r = a \cos \theta$ above the initial line.	(7)	5	3
	(ii)	Change of order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy$ and hence evaluate.	(7)	5	3
		(OR)			
(b)	(i)	Convert $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} (x^{2}+y^{2}) dy dx$ into polar coordinates and then evaluate.	(7)	5	3
	(ii)	Evaluate $\iiint (x+y+z) dx dy dz$ where V is the volume bounded by the	(7)	5	3
		parallelopiped $x=0, x=a, y=0, y=b, z=0, z=c$.			
		_			

Q. Code:577394

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)

		Marks	СО	RBT
				LEVEL
16.	Examine $f(x,y) = x^3 + y^3 - 12x - 3y + 20$ for its extrême values.	(10)	4	3
