Q. Code:122601

Reg. No.							

B.E. / B. TECH DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

IT22408 – PARADIGMS OF ALGORITHM DESIGN: THEORY AND PRACTICE

(Information Technology)

(Regulation 2022)

ті	ME-1 HOUR 30 MINUTES MAX MAI	RKS+ 51	ו
COU	JRSE STATEMENT	MAD: 30	RBT
OUTC CO1 CO2 CO3 CO4 CO5	OMES Articulate the process of problem solving and writing algorithms. Analyze recursive and non-recursive algorithms. Apply different algorithmic design techniques to solve computational problems. Evaluate the effectiveness of a solution by comparing the various approaches. Explain the limitations of computing power and solve problems using Approxim and randomized algorithms	nation	LEVEL 3 4 3 5 3
	(Answer all Questions)	CO	RBT LEVEL
1.	Justify the need of analyzing the algorithm.	1	3
2.	Write an algorithm of your choice with $\Theta(1)$ complexity.	1	2
3.	Write a recursive algorithm to calculate the factorial of a number.	2	3
4.	Solve the recursive equation: $T(n) = 2T(n/2) + c$; $T(1) = 0$	2	3
5.	Compare and contrast Greedy and Dynamic Programming.	3	2
6.	List two scenarios where Greedy design technique would not able to produce optimal solutions.	3	2
7.	Calculate the time complexity of the following snippet:	2	3
	For (i = 1; i<= n; i=i++)		
	{		
	<pre>Print("Welcome");</pre>		
	Break;		
	}		
8.	Evaluate the effectiveness of selecting the pivot element in quick sort.	3	4
9.	Give two examples of Class P and NP problems each.	5	2

9. Give two examples of Class P and NP problems each.5210. What do you mean by randomized algorithms? Give example.53

Q. Code:122601

PART- B (2x 10=20Marks)

Marks	CO	RBT LEVEL		
(10)	3	3		

11. (a) Given the weights and profits of N items, in the form of {profit, weight}, place these items in a knapsack of capacity W to get the maximum total profit, not exceeding the maximum capacity W. Deduce algorithm and analyze its time complexity, also apply algorithm for the given instance W=8kgs.

Item	Weight	Profits		
А	5	35		
В	1	10		
С	3	18		
D	3	12		

(OR)

- (b) Explain how divide and conquer methodology is applied on sorting (10) 3 3 algorithm so that the performance of the algorithm is O(nlog(n)). Explain the sorting algorithm and compute its time complexity.
- 12. (a) Demonstrate Backtracking design technique and explain with state space (10) 4 3
 tree "m-coloring graph problem". Analyze its time complexity

(OR)

(b) Justify why Single source shortest path does not use Dynamic programming (10) 4 3 whereas All pair shortest path uses Dynamic programming. Demonstrate the All pair shortest path algorithm using Dynamic programming and analyze its time complexity.

PART- C (1x 10=10Marks)

(Q.No.13 is compulsory)

MarksCORBT
LEVEL13.Demonstrate the necessity of approximation and explain how it is applied to(10)55TSP problem.
