Q. Code: 292447

Reg. No.							

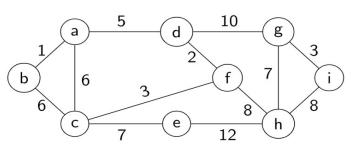
B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

IT18401 – PARADIGMS OF ALGORITHM DESIGN

(Information Technology)

(Regulation 2018 /2018A)

		(Regulation 2018/2018A)					
TIME:3 HOURS			. MARF	KS: 10) rbt		
COURSE OUTCOMES		STATEMENT					
CO 1		Develop simple and recursive algorithms to different problems.	e algorithms to different problems.				
CO 2 CO 3			problen	ns.	5 5		
CO 4	4 Explore NP Completeness problem.				4		
CO 5					4		
		PART- A(10x2=20Marks)					
		(Answer all Questions)					
				CO	RBT LEVEL		
1.	Execut	e the time required to search an element using basic hashing algorithm.		1	3		
2.		sorting algorithm is optimal when the list is sorted? Why?		1	2		
					3		
3. Execute the time complexity of searching an element from a set of n elements using 2 Binary search algorithm.							
4.					4		
5.	5. State Hamiltonian Circuit problem.				2		
6. How Prim's algorithm is better in finding the minimal spanning tree in comparison to the Kruskal's method?				3	3		
7.		re NP-hard and NP-completeness.		4	3		
8.					2		
9.	9. Differentiate SIMD and MIMD Architecture.				4		
10.	What a	are the variants of the PRAM model designed to manage concurrent r	nemory	5	2		
	accesse	es?					
		PART- B (5x 14=70Marks)					
			Marks	CO	RBT LEVEL		
11. (a)	Write an algorithm to sort the elements using bubble sort algorithm and analyze it's time complexity in best and worst case. (OR)	(14)	1	4		
(b) (i)	Prove that $7n^2+15n+3 \in \theta(n^2)$.	(7)	1	4		
	(ii)	Develop an algorithm for determining the uniqueness of an array and determine the time complexity of an algorithm.	(7)				


Q. Code: 292447 12. (a) Examine the working of Strassen's matrix multiplication algorithm (14) 2 4 with the help of divide and conquer method and analyze it's time complexity.

(OR)

(b) Solve the all pairs shortest path problem for the following weight (14) 2 4 matrix using Floyd's algorithm and evaluate it's time complexity.

2	∞	1	8]
0	3	2	∞
∞	0	4	∞
∞	2	0	3
∞	∞	∞	0
	$\infty \\ \infty$	$\begin{array}{ccc} 0 & 3 \\ \infty & 0 \\ \infty & 2 \end{array}$	$\begin{array}{cccc} 0 & 3 & 2 \\ \infty & 0 & 4 \\ \infty & 2 & 0 \end{array}$

13. (a)Apply the greedy technique to find the minimum spanning tree using(14)33Prim's algorithm for the graph.

(**OR**)

- Construct the state space tree of the backtracking algorithm applied to **(b)** (14) 3 3 the instance $A=\{3, 5, 6, 7\}$ and d=15 of the subset sum problem. 14. (a) Establish the relationship between Polynomial, NP, NP Complete and 3 (14) 4 NP-Hard problems and demonstrate polynomial time reducibility with example. (**OR**) Solve Travelling Salesperson problem with an example using **(b)** (14) 4 3 approximation algorithm. 15. (a) Describe various parallel architectures used to implement parallel 5 2 (14) algorithms. (**OR**) **(b)** Explain the CRCW PRAM computation model with an example to 5 2 (14) illustrate its functioning. PART- C(1x 10=10Marks) (Q.No.16 is compulsory) Marks CO RBT LEVEL 16. Develop an optimal solution for 0/1 knapsack problem using greedy 3 (10)5
 - method for the instances (p1,p2, p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15), M=40, n=4.
