Q. Code:986865

RBT

Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

IT18304 – DATA STRUCTURES AND ALGORITHMS

(Information Technology)

(Regulation2018/2018A)

TIME:3 HOURS

COURSE

MAX. MARKS: 100 STATEMENT

OUTCO	OMES	LEVEL
CO 1	Apply the concepts of ADT to design efficient algorithms.	3
CO 2	Select suitable linear data structures to solve computational problems.	4
CO 3	Choose appropriate non-linear data structures to solve computational problems.	4
CO 4	Develop solution for real world problems using hashing, Sorting, and Searching	3
CO 5	Experiment the use of appropriate data structures and design efficient algorithms to develop software applications.	5
	PART- A(10x2=20Marks)	
	(Answer all Questions)	
	СО	RBT LEVEL
1.	Identify the types of Data Structures suitable for the following scenarios 1	3
	i. Representing the list of Names of 10 students in a class.	
	ii. A college bus moving between different routes in working days.	
2.	Outline the operations performed in list ADT? 1	2
3.	Write the routine to push an element into a stack. 2	3
4.	Write the routine to delete an element from a queue. 2	3
5.	Summarize the significance of balance factor in AVL trees. 3	2
6.	List the applications of tree. 3	1
7.	Compare weighted graph and unweighted graph with examples. 3	2
8.	Compute in degree and out degree of the following graph 3	3
9.	Compare and contrast linear search and binary search. 4	2

10. Examine the conditions in which collision occur during insertion in hashing. Give 4 4 example.

Q. Code:986865

	PART- B (5x 14=70Marks)			
		Marks	CO	RBT LEVEL
11. (a)	Simulate and explain the steps involved in insertion and deletion into a singly linked list.	(14)	1	3
	(OR)			
(b)	Demonstrate how polynomial manipulations are performed with lists?	(14)	1	3
12. (a)	Devise an algorithm to evaluate arithmetic expressions using stacks.	(14)	2	4
	(OR)			
(b)	Analyse how circular queues are implemented with an example.	(14)	2	4
13. (a)	Organise the following elements in a binary search tree: 2,5,17,4,12,45,8,14,35,40,19. Display the elements of the binary search tree using preorder. post order and inorder traversal.	(14)	3	4
(b)	(OR) Analyse the result of inserting 3,1,4,6,9,2,5,7 into an initially empty AVL tree. Also show the result of deleting the root.	(14)	3	4
14. (a)	Apply prims's algorithm to find the minimum spanning tree of the following graph. Also write its pseudo code. $A \rightarrow B$ E D E E D E E D E	(14)	3	3
	(OR)			
(b)	Illustrate single source shortest path algorithm with suitable example.	(14)	3	3
15. (a)	Demonstrate Bubble Sort for the sequence -3, -1, -4, 1, -5, -9, 2, 6, 5	(14)	4	3
	(OR)			
(b)	Demonstrate searching operations using linear and binary search with an example.	(14)	4	3
	<u>PART- C (1x 10=10Marks)</u> (Q.No.16 is compulsory)			
		Marks	CO	RBT LEVEI
16.	 Given Input {437, 132, 617, 411, 429, 966, 199} and a hash function h(X) = X (mod 10). Construct hash table for the following i. Separate chaining hash table ii. Open addressing hash table using linear probing iii. Rehashing using the following second hash function 	(10)	5	5
	iii. Rehashing using the following second hash function $h^2(X) = 7 - (X \mod 7)$			

 $h2(X) = 7 - (X \mod 7)$