Q. Code:481031

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

IT18303 – INFORMATION AND CODING THEORY

(Information Technology)

(Regulation 2018/2018A)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Calculate Entropy, mutual information and channel capacity for various channels	3
CO 2	Demonstrate different encoding and decoding of digital data streams.	3
CO 3	Evaluate various methods of generating and detecting different types of error correcting codes	5
CO 4	Identify different compression and decompression techniques.	3
CO 5	Evaluate the performance of digital communication system by evaluating the probability of error for different errors.	5

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

			CO	RBT LEVEL
1.	Solve the entropy of the event of throwing a fair die.		1	3
2.	Summarize the properties of mutual information.		1	2
3.	Identify the merits and demerits of pulse code modulation.		2	2
4.	Explain Adaptive Differential Pulse Code Modulation.		2	2
5.	Examine the features of syndrome decoding.		3	3
6.	Infer the applications of Viterbi decoding.		3	3
7.	Summarize the principles of text compression.		4	2
8.	Explain the features of GIF.		4	2
9.	Mention the concept of sampling.		5	3
10.	Summarize the principles of video compression.		5	3
PART- B (5 x 14 = 70 Marks)				
		Marks	CO	RBT LEVEL

11. (a) A message source generates ten messages with probabilities 0.1, 0.13, 0.01, (14) 1 3
0.04, 0.08, 0.29, 0.06, 0.22, 0.05 and 0.02. The rate of message generation is 300 message/sec. Calculate the entropy of source and information rate. Obtain the Huffmann codes for message and calculate the average number of bits/message.

Q. Code:481031

(b) Apply the concept of mutual information and derive the capacity of the (14) 1 3 given channel.

12. (a)	Compare and contrast the features of delta modulation and adaptive delta modulation.	(14)	2	3
	(OR)			
(b)	Identify the techniques used for coding of speech signal at low bit rates and explain in detail.	(14)	2	3
13. (a)	Generate all possible (n,k) codewords assuming n=7,k=4 using linear block code.	(14)	3	3
	(OR)			
(b)	Apply convolutional coding and explain how codeword is generated.	(14)	3	3
14. (a)	Implement the differences between static Huffman coding and dynamic Huffman coding.	(14)	4	3
	(OR)			
(b)	List the differences between GIF and TIFF.	(14)	4	3
15. (a)	Examine the features of Code excited LPC with neat diagrams.	(14)	5	4
	(OR)			
(b)	Analyze the characteristics of various MPEG video standards.	(14)	5	4
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)		60	DDT
		Marks	CO	KB1 LEVEL
16.	Analyze and choose a suitable lossy compression technique for compressing digital images.	(10)	4	4
