	Q. Code:56	Q. Code:569924		
	Reg. No.			
	B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024			
	Third Semester			
	IT18302 – COMPUTER ORGANIZATION AND ARCHITECTURE			
	(Regulation2018/2018A)			
TIN	1E:3 HOURSMAX. MARK	S: 10)0	
COUR	SE STATEMENT		RBT LEVEI	
CO 1	Build the basic structure of computer, operations and instructions		4	
CO 2	Design arithmetic and logic unit.		6	
CO 3	Design and analyze pipelined control units		6	
CO 4	Evaluate performance of memory systems.		5	
CO 5	Construct the parallel processing architectures.		6	
	PART- A(10x2=20Marks)			
	(Answer all Questions)			
		СО	RBT LEVEL	
1.	List out the phases in the instruction cycle.	1	1	
2.	How would you categorize the process by which the CPU identifies the origin of an	1	1	
	interrupt request?			
3.	Sketch the IEEE 754 Floating-point Standard for two word number.	2	3	
4.	Identify the micro operation for the below control word	2	3	
	010 011 001 00101			

	010 011 001 00101		
5.	Analyze the load and store instruction.	3	4
6.	Compare and contrast the solutions for data hazards.	3	4
7.	Summarize the size of memory at each level.	4	2
8.	Examine the I/O interface for an I/O device.	4	4
9.	Distinguish Scalar instruction from vector instruction.	5	4
10.	Analyze how the implementation of the following two optimizations alleviates	5	4
	computational bottlenecks in most kernel operations?		

PART- B (5x 14=70Marks)

		Marks	CO	RBT LEVEL
11. (a)	Examine on the two micro operations	(14)	1	3
	DR←AC and AC←DR (Exchange) executed at the same time in the 16 bit			
	common bus architecture in detail.			

Q. Code:569924

(**OR**) **(b)** Employ the basic logic gates and design accumulator logic. (14)1 3 Apply the method for solving multiplication of 8 by 2, utilizing the last 2 3 12. (a) (14) version of the multiplication algorithm. (**OR**) **(b)** Illustrate the procedure for computing the product of 4 multiplied by 2, (14) 2 3 employing the initial version of the multiplication algorithm. Assess the efficiency of the designed data path and control lines for load 13. (a) (14) 3 5 and store instructions compared to alternative designs. (**OR**) **(b)** Estimate and choose appropriate solutions and alternatives for data, (14) 3 5 structural and control hazards in pipeline. 14. (a) Compare and contrast different cache mapping techniques. (14) 4 4 (**OR**) Analyze how different I/O techniques impact the system resources and 4 4 **(b)** (14) overall system efficiency in detail. 15. (a) Illustrate how four threads use the issue slots of a superscalar processor in 5 3 (14) different approaches? (**OR**) **(b)** Identify specific scenarios where the assumptions and limitations of GPUs (14) 5 3 become critical factors in system design and performance optimization. **PART-** C (1x 10=10Marks) (Q.No.16 is compulsory) Marks CO RBT LEVEL 16. Devise an efficient algorithm to perform arithmetic operations over two 4 (10)2 floating point numbers.
