	Q. Code:	5145	533
	Reg. No.		
	M.E / M.TECH. DEGREE EXAMINATIONS, MAY 2024		
	Second Semester		
	IR22201 – SENSORS, ELECTRICAL ACTUATORS AND DRIVES	I.	
	(Regulation 2022)		
	IE: 2 HOURS MAX. MA	RKS	: 60
OUTCO	MES STATEMENT	.1	LEVE
CO	I Students will be able to identify proximity and displacement sensors and apply	/ the	3
CO	2 To understand and practice on different sensors and apply them for measure	aring	1
	parameters like pressure, force and temperature.	U	
CO	3 Acquire the knowledge of signal conditioning and data acquisition.		2
CO	4 Graduates will able to select the suitable electrical actuators for the indus	strial	3
CO	 automation. Acquire knowledge on selection of electrical drives for the specific actuators 		2
00	5 require knowledge on selection of electrical arres for the specific actuators.		-
	PART- A (10 x $2 = 20$ Marks)		
	(Answer all Questions)	CO	RBT
1 F	numerate the static and dynamic characteristics which describes the system	1	LEVE 2
n 1.	erformance	1	-
р р г	dentify a senser which can be used as a fan speed regulator	1	n
2. 10	tentify a sensor which can be used as a fan speed regulator.	1	Z
3. In	nterpret the significance of NTC and PTC materials in temperature measurement.	2	2
4. D	Differentiate between tactile and proximity sensors. Give few examples for each type.	2	4
5. 0	compare the characteristics and performance specifications of different operational	3	4
o. c	multipliers commonly used in signal conditioning circuits	U	•
а 6 Г	Design a flow chart showing the conversion of physical phenomena into digital data for	2	2
U. L	resign a nowenant showing the conversion of physical phenomena into digital data for	5	3
p T	rocessing in data acquisition process.	4	~
7. Ľ	Describe the basic working principle of a stepper motor and provide an example of a	4	3

1.

2.

3.

4.

5.

6.

7.

Establish the relationship between speed and torque in an AC motor and its significance 8. 4 4 in various applications.

situation where stepper motors are preferred over other types.

- Interpret the concept of speed control in DC motors using an H-bridge under PWM 9. 5 2 mode.
- 10. Outline the basic operation of brushless DC (BLDC) motors and the role of controllers 2 5

in their operation.

	PART- B (3 x 10 = 30 Marks)			
		Marks	CO	RBT LEVEL
11. (a)	In a robotic assembly line that employs the use of Inductive Proximity Sensors, an error has been identified that causes mispositioning of the robotic arm. One hypothesis suggests this could be due to inappropriate sensor alignment. Discuss a structured approach through which you would assess this hypothesis.	(10)	1`	3
	(OR)			
(b)	If you have been appointed to implement an Ultrasonic sensor in a self-driving automobile, what are the key specifications you would focus on and why?	(10)	1	3
12. (a)	A bellows pressure transducer is being used in a fluid processing plant. The recorded readings appear inconsistent, despite the unchanged fluid pressure conditions. What logical steps would you propose to detect the source of error?	(10)	2	4
(b)	An industrial plant is set with different types of temperature sensors. Explain the working principles of any two types of temperature sensors used for industrial purposes with their corresponding applications.	(10)	2	4
13. (a)	Evaluate the design and optimization strategies for implementing a high- precision instrumentation amplifier in mechanical signal processing applications.	(10)	3	5
	(OR)			
(b)	Analyze the factors influencing the selection of an operational amplifier for a specific signal conditioning application, considering parameters such as bandwidth, slew rate, and noise performance.	(10)	3	5
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.14 is compulsory)			
		Marks	CO	RBT LEVEL
14.	Evaluate the optimal selection strategy for motors (DC, AC, stepper) and	(10)	4	5
	actuators (piezoelectric, linear, hybrid) in industrial applications,			
	considering performance metrics such as speed control, torque			
	requirements, precision positioning, and energy efficiency.			
