Reg. No.							

M.E/ M. TECH.DEGREE EXAMINATIONS, MAY 2024 First Semester

IR22004 – MACHINE LEARNING IN AUTOMATION SYSTEMS

(Mechanical Engineering)

(Regulation 2022)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Students will gain knowledge about basic concepts of Machine Learning.	2
CO 2	Students will be able to identify machine learning techniques suitable for a given problem.	3
CO 3	Students will solve the problems using various machine learning techniques.	4
CO 4	Students will be able to apply dimensionality reduction techniques.	3
CO 5	Students will be able to design application using machine learning techniques.	5

PART- A(20x2=40Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define Temporal Difference Learning and provide an example of its application.	1	2
2.	Describe the key principle behind Support Vector Machines in classification.	1	2
3.	What is the main idea behind Naive Bayes classifier, and why is it called "naive"?	1	2
4.	Differentiate between Linear Regression and Logistic Regression	1	2
5.	What is the primary objective of the Expectation-Maximization (EM) algorithm?	2	4
6.	Describe the Fuzzy K-Means algorithm and its significance in clustering.	2	2
7.	How does the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)	2	4
	algorithm work, and what are its key parameters?		
8.	What is the fundamental idea behind the Apriori algorithm in association rule learning?	2	2
9.	Describe the concept of a Probabilistic Neural Network (PNN) and its applications.	3	2
10.	How does a Hopfield Network store and recall patterns?	3	4
11.	Discuss the working principle of a Self-Organizing Map (SOM) and its applications.	3	2
12.	Explain the basic functioning of a perceptron model	3	2
13.	Define a fuzzy set and explain its basic concepts.	4	2
14.	What are fuzzy logic controllers, and how do they operate? Provide an example of an	4	3
	industrial application.		
15.	Describe fuzzy decision-making and its advantages over conventional decision-making	4	2

Marks

СО

RBT

approaches

16.	Provide an example of a fuzzy pattern recognition application and explain its operation.	4	3
17.	Describe the selection process in genetic algorithms. How does it contribute to the	5	2
	evolution of solutions?		
18.	What is mutation in the context of genetic algorithms? How does it introduce diversity	5	3
	in the population?		
19.	How does Particle Swarm Optimization (PSO) differ from Genetic Algorithms (GA)?	5	3
20.	Why is it important to define proper termination conditions in genetic algorithms	5	3

PART- B (5x 10=50Marks)

				LEVEL
21. (a)	Explain the concept of linear regression and logistic regression. Compare and	(10)	1	2
	contrast their applications in predictive modeling.			

(**OR**)

- (b) Explain the concepts of decision trees and random forests. Discuss the (10) 1 2 advantages and disadvantages of each algorithm in the context of classification and regression tasks.
- 22. (a) Illustrate the Expectation-Maximization (EM) algorithm in the context of (10) 2 3 unsupervised learning. Provide a step-by-step breakdown of how it works and discuss its applications in vector quantization and clustering.

(OR)

- (b) Brief the Density-Based Spatial Clustering of Applications with Noise (10) 2 3
 (DBSCAN) algorithm. Compare and contrast it with other clustering algorithms such as k-means and hierarchical clustering.
- 23. (a) Explain the architecture and learning process of a Back-Propagation Neural (10) 3 4
 Network (BPN). Discuss its advantages and limitations compared to other neural network models.

(OR)

(b) Compare and contrast Adaptive Resonance Theory 1 (ART1) and Adaptive (10) 3 4
 Resonance Theory 2 (ART2) neural networks. Discuss their applications and limitations, with reference to real-world case studies on genetic algorithm

Page 2 of 4

(GA) based algorithm development.

24. (a) Explain the basic concepts in Fuzzy Set theory and how they form the (10) 4 3 foundation for Fuzzy logic controllers with example to illustrate the application of Fuzzy logic controllers in various industrial contexts.

(OR)

- (b) Discuss the principles underlying adaptive Fuzzy systems and their (10) 4 3 significance in real-world applications. Provide a case study illustrating the development and implementation of an adaptive Fuzzy system in a practical scenario.
- 25. (a) Discuss the process of initializing, selecting, mutating, and terminating (10) 5 4 genetic algorithms. Brief with examples to illustrate each steps in detail.

(OR)

(b) Compare and contrast genetic algorithms (GAs) with other metaheuristic (10) 5 4 optimization techniques such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Tabu Search, and Reactive Search Optimization (RSO) in terms of their underlying principles, advantages, and limitations.

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

		Marks	CO	RBT
				LEVEL
26.	How does DBSCAN differ from centroid-based clustering methods like K-	(10)	2	5
	Means? Analyze concept of core points, border points, and noise points in			
	DBSCAN, and explain how they contribute to cluster formation with			
	relevant examples.			

Q. Code: 696898