Q. Code:755083

Reg. No.

B.E./B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

EE22402 – CONTROL SYSTEMS

(Electrical and Electronics Engineering)

(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Derive transfer functions for electrical and mechanical systems.	4
CO 2	Analyze the root locus for a transfer function and interpret time response.	4
CO 3	Sketch Bode and Polar plots for a transfer function and verify the stability of a system by	4
	Routh-Hurwitz and Nyquist criteria.	
CO 4	Implement a Controller and Design a Compensator using Bode plot.	4
CO 5	Solve a physical system with state variable.	4

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Write Mason's gain formula.	1	2
2.	Identify the basic components of automatic control systems?	1	3
3.	Write the analogous electrical elements in force voltage analogy for the elements of mechanical translational system.	1	2
4.	Outline the advantages of closed loop control systems.	1	2
5.	Define damping ratio.	2	2
6.	Express rise time and peak time in time domain analysis.	2	2
7.	Name the test signals used in time response analysis.	2	2
8.	$G(S) = \frac{S+4}{(3+S)(S-2)}$	2	2
0	Determine the type and order of the following system.	•	
9.	Differentiate Gain cross over frequency and Phase cross over frequency.	3	4
10.	Define Nyquist stability criterion.	3	2
11.	Write the necessary and sufficient condition for the stability in Routh Stability criterion.	3	2
12.	Compare Bode plot with Polar plot.	3	4
13.	The addition of a pole will make a system more stable. Justify your answer.	4	5
14.	What are the two situations in which compensation is required?	4	3
15.	Draw the Lag-Lead compensator network.	4	2
16.	Discuss the effect of PI controller on the system performance?	4	2

		Q. Code:7550	83
17.	What are the advantages of state space representation?	5	2
18.	Explain the sampling theorem in digital domain.	5	2
19.	Summarize the properties of State Transition Matrix?	5	2
20.	Write the general form of state variable matrix.	5	2

RBT	
LEVEL	

СО

Marks

21.(a) Write the differential equations governing the mechanical system, and obtain (10) 1 4 the force voltage analogy network.

(b) Using Mason's gain formula, find C/R of the signal flow graph shown in (10) 1 4 figure.

22.(a) Sketch the root locus for the open loop system given as (10) 2 4

$$G(S)H(S) = \frac{K(S^2 - 4S + 20)}{(S+2)(S+4)}$$

(OR)

- (b) Derive the time response analysis of second order system for the unit step (10) 2 4 input.
- 23.(a) Develop the bode plot for the system having the following transfer function (10) 3 4

$$G(S)H(S) = \frac{800000(S+1)}{S(S+10)(S+40)(S+100)}$$

(OR)

(b)	(i)	Determine the range of 'K' for stability of unity feedback system using	(5)	3	4
		Routh stability criterion whose transfer function			
		$\frac{C(S)}{R(S)} = \frac{K}{S(S^2 + S + 2)(S + 2) + K}$			
	(ii)	Explain the various procedures for polar plot and to find the stability.	(5)	3	4
24.(a)	Con	sider the following linear system given as below, design a state feedback	(10)	4	4
	con	troller for the desired pole locations at $S = -1, S = -2, S = -3$			

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 1 & -3 & 4 \\ -1 & 1 & -9 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

(OR)

- (b) Derive the transfer function for Lag compensator network. List the various (10) 4 4 procedures to design a Lag Compensator.
- 25.(a) Determine the state controllability of the system described by (10) 5 4

(OR)

(b) Obtain the transfer function of the system defined by the following state space (10) 5 4 equations.

$$\begin{bmatrix} x \\ X_1 \\ x \\ X_2 \\ x \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$
$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

PART- C (1 x 10 = 10 Marks)

Q. Code:755083

(Q.No.26 is compulsory)

26.

Marks СО RBT LEVEL A discrete-time system has the transfer function $\frac{Y(Z)}{U(Z)} = \frac{4Z^3 - 12Z^2 + 13Z - 7}{(Z-1)^2(Z-2)}$ (10) 5 5

Determine the state model of the system in phase variable form.
