Q. Code:167067

Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Third Semester

EE22309– ELECTRON DEVICES AND CIRCUITS: THEORY AND PRACTICES

(Electrical and Electronics Engineering)

(Regulation 2022)

TIME:2 HOURS

MAX. MARKS: 60

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply the concepts of PN junction devices and analyse its various electronic circuits	4
CO 2	Analyse the various configurations of bipolar junction transistors and amplifiers.	4
CO 3	Analyse the various configurations of field effect transistors and amplifiers.	4
CO 4	Analyse the performance of multistage and feedback amplifier circuits.	4
CO 5	Understand the operation of oscillators and Optoelectronic devices and analyse its	4
	behaviour	

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	The reverse saturation current of a silicon pn junction diode is $10\mu A$.Calculate the diode	1	3
	current for the forward bias voltage of 0.7V at 25°C.		
2.	Give the effect of Temperature on PN Junction diode.	1	2
3.	Which of the BJT configuration is suitable for impedance matching application? Why?	2	3
4.	When the drain voltage increases beyond the pinch off voltage, What will happen to the	3	2
	drain current?		
5.	The data sheet of JFET indicates that it has I_{DSS} =14mA and V_{GS} (off)=-5V.Calculate the	3	3
	value of I_D when V_{GS} is (i) 0V and (ii) -5V.		
6.	Which MOSFET is called as normally ON MOSFET? Why?	3	2
7.	How to protect the MOSFET from stray voltages?	3	2
8.	Draw the equivalent circuit of UJT.	3	2
9.	Single stage amplification is not sufficient to meet the power requirement in particular	4	3
	application, Mention the method to meet the power requirement?		
10.	Mention the application of Photodiode and phototransistor.	5	2

PART- B (3x 10=30Marks)

									Marks	CO	RBT LEVEL
11. (a)	(i)	With charac	the teristic	necessary	diagrams,analyze	forward	and	reverse	(5)	1	3

	,	Q. Code:167067				
	(ii) Derive the expression for diffusion capacitance in PN diode.(OR)	(5)	1	3		
(b)	In an application which needs the output voltage to be regulated. Choose the	(10)	1	3		

- appropriate device, that would ensure this operation with appropriate circuit. Also discuss how it regulates the voltage.
- 12. (a) Design a Voltage divider bias circuit for transistor to establish the quiescent (10) 2 4 point as $V_{CE}=12V$, $I_C=1$. 5mA, stability factor S \leq 3, β =50, VBE=0.7V, VCC=22. 5V, $R_C=5$. 6K Ω .

(OR)

(b) Using the small signal model, Derive the expression for voltage gain, input (10) 2 4 and output impedance of the figure shown below.

14.

13. (a) Discuss the principle and operation of a Colpitts oscillator and also derive (10) 5 3 the frequency of oscillations.

(**OR**)

(b) Design an oscillator to operate at a frequency of 1KHz which gives an (10) 5 3 extremely pure sine wave output and good frequency stability. Discuss the operation of this oscillator as an audio signal generators.

<u>PART- C(1x 10=10Marks)</u>

(Q.No.14 is compulsory)			
	Marks	CO	RBT
Identify the feedback topology used in emitter follower circuit. With the	(10)	4	LEVEL 4
help of h parameter equivalent circuit, derive the expression for voltage			
gain, input impedance and output impedance.			
