Q. Code: 330544

Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

EE22308 – DIGITAL LOGIC CIRCUITS: THEORY AND PRACTICES

(Electrical and Electronics Engineering)

(Regulation 2022)

TIME:2	HOURS MAX. MARKS	IAX. MARKS: 60		
COURSE OUTCOMES	STATEMENT	RBT LEVEL		
CO 1	Apply the concepts of Boolean algebra and reduction techniques to minimize logic expressions.	3		
CO 2	Analyze and design various combinational logic circuits.	4		
CO 3	Investigate and design synchronous and asynchronous sequential circuits.	4		
CO 4	Comprehend the operation, characteristics of memory devices, digital logic families and construct digital circuits with memory devices.	3		
CO 5	Design, debug and verify simple digital circuits and systems with the aid of HDL codes, schematic capture tools and simulation tools.	4		

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Convert the octal and hexadecimal equivalent of $(377)_{10}$.	1	2
2.	Compare decoder and demultiplexer.	2	2
3.	Show the truth table of a simple multiplexer.	2	3
4.	Implement full adder logic using 3:8 decoder circuit.	2	3
5.	How many flip flops are required to count up to 2024.	2	2
6.	Draw the logic diagram of T flip-flop using NAND gates.	2	3
7.	Explain briefly Master slave JK flip-flop.	2	2
8.	Explain mealy model and Moore model.	3	3
9.	Differentiate synchronous and asynchronous sequential circuits.	4	2
10.	Compare PROM, PLA and PAL	5	2

PART- B (3x 10=30Marks)

			Marks	СО	RBT
					LEVEL
11. (a)	(i)	Simplify the following Boolean function using K-map in SOP form F	(5)	1	3
		$(W, X, Y, Z) = \sum (1,3,4,6,9,11,12,14)$. Also Realize the Expression			
		using logic gates.			

Q. Code: 330544(ii) Encode the binary word 1011 into seven bit even parity Hamming(5) 1 3

(**OR**)

- (b) Design and implement the simplest circuit that has three inputs, X₁, X₂, and (10) 1 3 X₃, which produces an output value of 1 whenever exactly one or two of the input variables have the value 1; otherwise, the output has to be 0.
- 12. (a) A sequential circuit with two D flip-flops A and B; input X and (10) 3 4 output Y is specified by the following next state and output equations:

 $A_+ = AX + BX$; $B_+ = A'X$ and Y = (A+B) X'

code.

Derive the state table and state diagram. Also draw the logic diagram of the circuit.

(OR)

(b)	Desi	ign and analyze a 4-bit ring counter and mention its applications.	(10)	3	4
13. (a)	Desi	ign a Asynchronous decade counter.	(10)	4	4
		(OR)			
(b)	(i)	What are static-0 and static-1 hazards? Show the removal of hazards	(5)	4	4
		using hazard covers in K-map.			
	(ii)	Examine cycles and races in asynchronous sequential circuits.	(5)	4	4

PART- C (1x 10=10Marks)

(Q.No.14 is compulsory)

		Marks	СО	RBT
				LEVEL
14.	Implement the combinational circuit with a PLA having 3 inputs, 4 product	(10)	5	5
	terms and 2 outputs for the functions. F1(A, B, C) = $\sum (0, 1, 2, 4)$			
	$F2(A,B,C)=\sum(0,5,6,7)$			
