Q. Code: 113383

5

5

5

2

2

2

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

EE22303 – ELECTROMAGNETIC THEORY

(Electrical and Electronics Engineering)

(Regulation 2022)

TI	ME: 3 HOURS MAX. MAJ	RKS:	100
COU	RSE STATEMENT		RBT LEVEL
CO 1	Apply basic mathematical concepts to solve electromagnetic vectors in orthog coordinate system.	gonal	4
CO 2	Interpret and solve the problems related to electrostatics.		4
CO 3	Apply the electrostatic principles to compute the boundary value problems and an Electric field in material space.	alyze	4
CO 4	Analyze and solve the problems related to magneto-statics.		4
CO 5	Solve time-varying fields using Maxwell's equation and Electromagnetic equation.	wave	4
	PART- A (20 x 2 = 40 Marks)		
	(Answer all Questions)		
		CO	RBT LEVEL
1.	When a vector field is solenoidal and irrotational?	1	2
2.	Write expression for differential length in cylindrical and spherical co-ordinates.	1	2
3.	Verify that the vectors $\bar{A}=4\hat{a}_x-2\hat{a}_y+2\hat{a}_{zand}$ $\bar{B}=-6\hat{a}_x+3\hat{a}_y-3\hat{a}_{zand}$ are parallel to each other	1	2
4	other.	1	2
4. 5	List the applications of Gauss's law	1	2
5. 6	Define Electric flux intensity	2	2
0. 7	Compare uniform and non-uniform field	2	2
7. 8	What is dipole?	2	2
0. Q	Express the boundary conditions at the interface between two perfect dielectrics	23	2
). 10	Write the Poisson's equation for free space	3	2
10.	Express the value of capacitance for a coaxial cable	3	2
12	Calculate the capacitance of a parallel plate capacitor having an electrode area of	3	2
12.	100 cm^2 . The distance between the electrodes is 3mm and the dielectric used has a permittivity of 3.6.	0	2
13.	Write the expression of magnetic field intensity due to infinite sheet.	4	2
14.	State Biot-Savart's law.	4	2
15.	Distinguish between circuit theory and field theory	4	2
16.	Define self and mutual inductance.	4	2

- List the properties of electromagnetic waves.
 Define the term motional EMF.
- **19.** Give the expression of Poynting vector.

	0.	Code:	1133	83	
20.	Obtain the intrinsic impedance at free space.		5	2	
	PART- B (5 x 10 = 50 Marks)				
		Marks	CO	RBT LEVEL	
21. (a)	Express vector \overline{B}_{in} cartesian and cylindrical coordinate systems. Given	(10)	1	4	
	$\overline{B} = \frac{10}{r} \overline{a}_r + r \cos \theta \overline{a}_{\theta} + \overline{a}_{\varphi} \text{then } \overline{B}_{\text{at } (-3, 4, 0) \text{ and } (5, \frac{\pi}{2}, -2)}$				
	(OR)				
(b)	State and Prove that Divergence's theorem with suitable equations. Also show that divergence of a curl of a vector is zero	(10)	1	4	
22. (a)	A circular of radius 'a' meter is charged uniformly with a charge density ρ_s c/m ² . Find the electric field at a point 'h' meter from the disc along its axis.	(10)	2	3	
(b)	Find Electric field intensity and potential at $r_A = 5m$ with respect to $r_B = 15m$ due to point charge Q = 500pC at the origin and zero reference at infinity.	(10)	2	3	
23. (a)	State and prove electrostatic boundary conditions with neat diagram. (OR)	(10)	3	4	
(b)	Assess an expression for the capacitance of a parallel plate capacitor with	(10)	3	4	
	two dielectrics of relative permittivity \mathcal{E}_1 and \mathcal{E}_2 respectively interposed between plates. Also write the expression for energy stored and energy density.				
24. (a)	Show by means of Biot-savart's law that the flux density produced by an infinitely long straight wire carrying a current 'I' at any point distant ' ρ ' $\frac{\mu_0 \mu_r I}{\mu_0 \mu_r I}$	(10)	4	4	
	normal to the wire is given by $2\pi\rho$				
(b)	(OR) Find the torque about y axis for the two conductors of length T corrying	(10)	4	1	
(0)	current in opposite directions separated by a fixed distance 'w' in an uniform magnetic field in x axis direction.	(10)	-	-	
25. (a)	(i) Discuss about transformer and motional EMF.	(10)	5	4	
	(ii) State and prove Poynting theorem.	(10)	5	4	
	(OR)				
(b)	Derive the equation of the propagation of the plane electromagnetic wave in free space.	(10)	5	4	
	<u>PART- C (1 x 10 = 10 Marks)</u>				
	(Q.No.26 is compulsory)	Marks	CO	RBT	
26.	Make use of suitable law to obtain the Maxwell's equations in differential	(10)	5	level 5	

and integral form.
