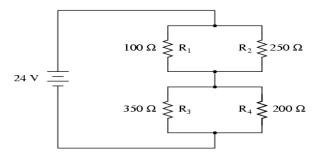
Q. Code:541539

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester

EE22251 – BASIC ELECTRICAL AND ELECTRONICS ENGINEERING FOR CHEMICAL ENGINEERS

(Chemical Engineering)

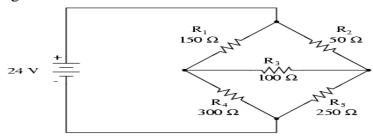

(Regulation 2022)

TIME:3	HOURS MAX. MARKS: 100	
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply basic electrical laws for the electrical circuits and understand sensors and measurement principles	3
CO 2	Analyze the characteristics of various semiconductor devices and develop circuits for an application.	4
CO 3	Analyze and select electrical machines for drive applications based on characteristics.	4
CO 4	Identify the structure and types of Electrical drives for specific applications.	3
CO 5	Apply control methods for Electrical Machine and Drives in chemical process industries	3

PART- A(20x2=40Marks)

(Answer all Questions)

		СО	RBT
			LEVEL
1.	State the laws which are used to find unknown currents and voltages in a circuit.	1	2
2.	Calculate the total resistance of the circuit.	1	3



3.	Contrast the lead-lag behaviour of current waveform w	ith respect to voltage waveform	1	3
	in each of R, L and C circuits.	· · ·		
4.	What are the factors affecting resistance?		1	2
5.	Differentiate between zener breakdown and avalanche b	reakdown.	2	2
6.	Draw V-I characteristics of SCR.		2	2
7.	Why IGBT is very popular nowadays?		2	3
8.	What is meant by step-up and step-down chopper?		2	2
9.	Write the voltage equation of DC motor and DC generat	tor.	3	2
10.	Clarify why brushes in a generator are made of carbon?		3	2
11.	Draw the speed torque characteristics of		3	3
	(a) Constant Torque type load (b) Generat	tor type load		
	(c) Fan type load (d) constan	t power type load.		
12.	What is the Necessity of starter?		3	2
13.	List the factors affecting the selection of electric drives.		4	2
14.	Mention the function of Power modulator.		4	2
15.	Give the formula for computing power requirement for a	a liner movement.	4	2
	*			

		Q. Co	de:541	539
16.	What is meant by multimotor drive? Give an example.		4	2
17.	Compare the chopper control and phase control schemes for <u>DC motor</u> drives.		5	2
18.	Mention the different methods of speed control employed for DC Motor.		5	2
19.	List the different methods of speed control of three phase induction motor.		5	2
20.	What in the need for PWM inverter control?		5	3
	PART- B (5x 10=50Marks)			
		Marks	CO	RBT

- 11 - 20

21. (a) Determine the mesh and branch currents for the following Network is (10) 1 3 shown in figure

(OR)

	(OK)			
(b)	Explain in detail about Resistance Temperature Detector and its characteristics.	(10)	1	3
22. (a)	Describe the working of a PN junction diode with neat diagrams. Also explain its V-I characteristics.	(10)	2	3
	(OR)			
(b)	Draw and explain working of full bridge rectifier.	(10)	2	3
23. (a)	Explain about the speed-torque characteristics of a DC Shunt Motor with suitable graph and equations.	(10)	3	3
	(OR)			
(b)	State the various starting methods of squirrel cage induction motor. Explain any two of them.	(10)	3	3
24. (a)	Derive the expression for the heating time constant and draw the heating and cooling curve.	(10)	4	3
	(OR)			
(b)	Explain the different classes of duties of a motor with neat sketch.	(10)	4	3
25. (a)	Explain the field control method used for D.C series motor for speed control?	(10)	5	3
	(OR)			
(b)	What is meant by slip power recovery scheme? Explain with the necessary diagram.	(10)	5	3
	<u>PART- C (1x 10=10Marks)</u>			
	(Q.No.26 is compulsory)			
		Marks	СО	RBT
			- 0	LEVEL
26.	Explain how an DC Shunt motor is brought to stop by (i) Plugging and (ii)	(10)	3	4

dynamic braking. Explain the conditions to achieve electric regenerative breaking.
