Q. Code:337240

Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester

Second Semester

EE22201- ELECTRIC CIRCUIT ANALYSIS

(Electrical and Electronics Engineering)

(Regulation 2022)

MAX. MARKS: 100

1

3

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply circuit laws to analyze steady-state parameters of given electrical circuits.	4
CO 2	Simplify DC and AC electrical circuits by applying suitable reduction methods and network theorems.	3
CO 3	Analyze three phase balanced and unbalanced circuits to determine power and power factor.	4
CO 4	Analyze transients of electrical circuits and parameters of two-port networks.	4
CO 5	Realize resonance phenomenon and the effect of magnetic coupling in real time applications.	5

PART- A (20x2= 40Marks)

(Answer all Questions)

		СО	RBT
			LEVEL
1.	State Kirchoff's laws.	1	2
2.	Give two applications of both series combination and parallel combination.	1	2
3.	Find the equivalent impedance across the terminals A-B.	1	2

4. Determine the currents I_1 and I_2 in the circuit shown in fig.

TIME:3 HOURS

5.	State Norton's theorem.	2	2
6.	A current $5 \leq -30^{\circ}$ A is flowing through a circuit consists of series connected when	2	3
	excited by a source of $^{200} \angle 45^{\circ}$ V, 50Hz. Analysis the elements of circuit.		
7.	The impedance of each branch of a delta connected circuit is $\sqrt{3Z}$. What will be the	2	3
	branch impedance of equivalent star-connected circuit.		

Q. Code:337240

2

3

LEVEL

8. Find the current through the ammeter shown in fig. by using super position theorem.

	PART- B (5x 10=50Marks)	CO	DRT
	parallel.		
20.	Write the expression for the equivalent inductance of two coupled coils connected in	5	2
	at 50Hz.		
19.	An RLC series circuit has R=10 Ω and X _c =62.833 Ω .Find the value of L for resonance	5	3
18.	Write the characteristics of series resonance.	5	2
	and the resonant frequency.		
17.	Write an expression for the bandwidth of a series resonant circuit in terms of Q factor	5	2
	circuit.		
16.	State the advantages of Laplace transform application to the solution of electric	4	2
101	a two port network.	-	-
15.	What is a two port network and List the various parameter sets that are used to model	4	2
14.	What is the time constant of an RC circuit with $R = 10k\Omega$ and $C = 40\mu$ F?	4	2
13.	Distinguish between steady state and transient state.	4	2
	which motor is working.		
	3phase, 50Hz,440V supply taking a current of 30A.Calculate the power factor at		
12.	The power input to a three phase induction motor is 20kW when connected to a	3	3
11.	Give the relation connecting the power factor angle with two watt meter readings.	3	2
10.	Compare balanced and unbalanced network.	3	2
9.	List out the advantages of three phase system over single phase system.	3	2

21.(a)	Find the voltage across 5 Ω resistor for the circuit shown in fig using Nodal		1	4
	analysis.			

(OR)

(b) Calculate the equivalent impedance of the network across the output (10) 1 4 terminals A-B shown in fig. If an alternating voltage of 150 ∠ 0° is connected across A-B.Calculate (i) Total Impedance (ii) The current drawn from the

(10)

2

4

source (iii) The current through each impedance (iv) The real power consumed.

22.(a) Determine Thevenin's equivalent for the circuit shown in fig. Also, find the (10) 2 4 optimum value of R_L to derive Maximum power from the network and the Maximum power delivered by R_L .

(**OR**)

(b) In the shown in figure, Find I_3 and verify the reciprocity theorem.

2.75n I = 4n I = 20n I = 20n I = 10 I = 10 I = 200 I = 200 I = 200

23.(a) A 3 phase star connected system with 400V (line) is connected to three loads (10) 3 4 $25 \ge 0^{\circ} \Omega, 11 \ge -20^{\circ} \Omega$ and $15 \ge 16^{\circ} \Omega$. Find the line current ,power and the current in the neutral of the system.

(**OR**)

- (b) The two-watt meter produces watt meter readings W₁=1560W and (10) 3 4 W₂ = 2100W when connected to a delta connected load. If the line voltage is 220V calculate (i) Active Power (ii) Reactive Power (iii) Power factor (iv) Phase Impedance. Is the phase impedance inductive or capacitive? Justify.
- 24.(a) For the circuit shown in fig, determine the currents i₁(t) and i₂(t) when the (10) 4 4 switch is closed at t=0.Assume that the initial current through the inductor is

4

zero.

- (b) Develop an expression for transient current, voltages and the energy stored in (10) 4 4 capacitor of a RC transient circuit excited by a DC source.
- 25.(a) Determine the resonant frequency, bandwidth and quality factor of the coil (10) 5 for the series resonant circuit containing $R=10\Omega$, L=0.1H and $C=10\mu$ F.Derive the formula used for bandwidth.

(OR)

- (b) (i) Two coupled coils with L₁=0.02H, L₂=0.01H and K=0.5 are connected (10) 5 4 in four different ways, series aiding, series opposing and parallel aiding, parallel opposing. What are the four equivalent inductance?
 - (ii) Find the value of L at which the circuit resonates at a frequency of 1000rad/sec in the circuit shown in fig.

<u>PART- C (1x 10=10Marks)</u>

(Q.No.26 is compulsory)

	Marks	CO	RBT LEVEL
or the	(10)	1	4

26. Use mesh analysis, determine the current through 1Ω , 3Ω , 5Ω resistor for the (10) 1 4 given circuit.
