Q. Code:456046

1

2

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 First Semester

EE22152 – BASIC ELECTRICAL ENGINEERING

(Electronics and Communication Engineering)

(Regulation 2022)

TIME: 3	HOURS MAX. MARKS:	100
COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Analyze DC and AC electrical circuits using Kirchhoff's law.	4
CO 2	Explain the working principle of electrical machines.	4
CO 3	Choose the appropriate electrical machines for various applications.	4
CO 4	To introduce the components of low voltage electrical installations and the working principles of Power converters.	4
CO 5	To study the different types of measuring instruments.	4

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT
			LEVEL
1.	Estimate the current I_T given I_1 =-3A, I_2 =6A, I_3 =10A.	1	2

S

2. Solve the given circuit to determine i_{X} .

3.	Summarize the formulas required for converting star network to delta network.	1	2
4.	All resistances in the figure are in ohms.	1	2

Calculate the value of equivalent resistance Req.

5.	What is back EMF and what is its impact on motor operation.		
6.	A DC motor has a torque constant Kt of 0.1 Nm/A. If the armature current is 5 A,	2	2
	calculate the torque produced by the motor.		
7.	Draw the equivalent circuit of a practical transformer.	2	2
8.	List out the major and minor losses in a transformer.	2	2
9.	What are the advantages of three phase system over single phase system.	3	2
10.	How will you find the speed of an ac machine with given frequency and poles? Justify.	3	3
11.	A 2-pole generator rotor runs at 3600 rpm. Find the electrical frequency of the	3	3
	generated signal.		
12.	A 12- pole, 50 Hz, three phase induction motor runs at 485rpm. What is the frequency	3	3
	of rotor current?		
13.	Express the necessity of a fuse in an electrical circuit.	4	3
14.	Distinguish between MCB and MCCB.	4	2
15.	Cite the properties of electrical cable.	4	2
16.	Compute the energy consumption of a system that consumes 190 Watts of power and	4	3
	works for 3 hours a day.		
17.	Show the figure of a Moving Iron instrument when it is used as a voltmeter and an	5	2
	ammeter.		
18.	Classify the types of analog meter.	5	2
19.	Represent the secondary instrument and its types.	5	2
20.	Indicate the torque is absent in the energy meter. State the reason.	5	3
	PART- B (5 x 10 = 50 Marks)		
	Marks	CO	RBT LEVEL
21. (a)	Analyze the circuit to find the mesh currents using Cramer's method and (10)	1	4
	calculate the current through the 8Ω resistor.		

22. (a)	Draw the circuit of separately excited DC motor. And also explain its	(10)	2	4
	construction and working.			

(OR)

- (b) Explain the torque- speed characteristics and speed control of separately (10) 2 4 excited DC motor.
- 23. (a) How the RMF is generated in the three-phase induction motor? Explain the (10) 3 4 construction and working of three phase Induction Motor.

(OR)

- (b) Compare the Induction motor and generator. Also explain the construction (10) 3 4 and working the synchronous generator?
- 24. (a) Construct the buck-boost converter and explain its operation with an (10) 4 3 equivalent circuit for different modes and waveforms.

(OR)

- (b) Briefly explain the components of LT switchgear and its types. (10) 4 3
- 25. (a) With the neat sketch, explain the construction and operation of repulsion (10) 5 4 and attraction type moving iron instruments.

(OR)

(b) (i) The coil of a measuring instrument has a resistance of 1 Ω , and the (7) 5 4

		Q	. Code	:456	046
		instrument has a full scale deflection of 250 V when a resistance of			
		4999 Ω is connected with it. Find the current range of the instrument			
		when used as an ammeter with the coil connected across a shunt of			
		(1/499) Ω and determine the value of the shunt resistance required for			
		the instrument to display a full scale deflection of 50 A			
	(ii)	Analyze the PMMC instrument with neat diagram.	(3)	5	4
		<u>PART- C (1 x 10 = 10 Marks)</u>			
		(Q.No.26 is compulsory)		60	DDT
			Marks	co	LEVEL
26.	A th	ree -phase 6-pole, 50 Hz induction motor has a slip of 1% at no load and	(10)	2	5

3% at full load. Find (a)the synchronous speed, (b) the no -load speed, (c) the full- load speed, (d) the frequency of rotor-currents at standstill, and (e)the frequency of rotor-currents at full load.
