Q. Code:611812

00

CO

Marks

RBT

ррт

Reg. No.

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2024 Seventh Semester

EE18701 PROTECTION AND SWITCHGEAR

(Electrical and Electronics Engineering)

(Regulation 2018)

TIME:3 HOURS MAX. MARKS: 100 Course RBT **Statements Outcomes** Level **CO1** Interpret the faults in power system and essential qualities of protection 4 4 **CO2** Understand the operation of various electromagnetic relays. **CO3** Analyze the protection schemes for power system apparatus. 4 **CO4** Synthesize various relays using static comparators and microcontroller. 4 **CO5** Analyze the circuit breaker arcing phenomenon and understand the functioning 4 of various types of circuit breakers

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	LEVEL
1.	List out the consequences of a short circuit.		2
2.	Compare Primary and Back up protection.	1	2
3.	A relay is connected to 400/5 ratio current transformer with current setting of 150%.	2	3
	Calculate the Plug Setting Multiplier when circuit carries a fault current of 2400 A.		
4.	Justify the purpose of universal torque equation.	2	4
5.	What are the advantages of carrier aided protection of transmission lines?	3	2
6.	Identify the limitations of Buchholz relay.	3	3
7.	What are amplitude and phase comparators?	4	2
8.	Differentiate between conventional and numerical relays.	4	4
9.	What is resistance switching?	5	2
10.	Differentiate Fuse and circuit breaker.	5	4

PART-B (5x 14=70Marks)

					LEVEL
11. (a)	(i)	Discuss the essential qualities of protective relaying system.	(7)	1	2
	(ii)	Describe fault current calculation using symmetrical components for a Line to Ground fault	(7)	1	2
		(UR)			

(b) Explain various methods of effective and non-effective neutral grounding. (14) 1 2

12. (a)	Elał diag	porate the operating principles, conditions, characteristics (R-X gram), and applications of mho relays.	(14)	2	3
		(OR)	(10)	2	2
(b)	(1)	Elaborate the classification of over-current relays based on time- current characteristics.	(10)	2	3
	(ii)	What is an under frequency relay and why it is required?	(4)	2	3
13. (a)	(i) (ii)	Differentiate between Unit and Non – Unit Protection Schemes. Why is harmonic restrained differential relay used for protecting large size transformer? Describe its design and working.	(04) (10)	3 3	3 3
(b)	Des oper	ign Merz-price protection scheme for alternator and analyze its ration for internal and external faults.	(14)	3	3
14. (a)	Des com	ign static impedance, reactance and Mho relays using amplitude parators.	(14)	4	3
		(OR)			
(b)	Disc for t	cuss the design steps of typical numerical differential protection scheme the transformer.	(14)	4	3
15. (a)	(i)	A circuit breaker is rated as 1750 A, 1000 MVA, 33 kV, 3-second, 3- phase oil circuit breaker. Find (i) rated symmetrical breaking current/capacity (ii) rated making current/capacity (iii) short-time rating.	(06)	5	3
	(ii)	Explain the methods of arc extinction.	(08)	5	3
		(OR)			
(b)	(i)	For a 132kV system, the reactance and capacitance up to the location of the circuit breaker is 3.2 ohms and 0.015 micro farad, respectively. Calculate,	(06)	5	3
		(a) The maximum value of restriking voltage across the contacts of the circuit breaker.			
	(ii)	(b) The maximum value of RRRV.	(08)	5	3
	(11)	voltages.	(00)	5	5
		<u>PART- C (1x 10=10Marks)</u>			
		(Q.No.16 is compulsory)	Marks	со	RBT
16			(10)	E	
10.	A 25 trans	5 MVA, 13.2 kV alternator with solidly grounded neutral has a sub- ient reactance of 0.45 p.u. The negative and zero sequence reactance	(10)	Э	4

are 0.55 and 0.25 p.u. respectively. Determine the circuit breaker rating for three phase and LLG faults at the terminals of an unloaded alternator and examine the results. Neglect resistance.
