Q. Code:922351

00

Marks CO

RBT

DDT

Reg. No.

B.E. / B. TECH DEGREE EXAMINATIONS, MAY 2024 Fifth Semester

EE18505 – DIGITAL SIGNAL PROCESSING

(Electrical and Electronics Engineering)

(Regulations 2018/2018A)

TIME: 3	HOURS MAX. MARKS: 1	100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Understand the fundamental aspects of digital signal processing.	3
CO 2	Acquire knowledge on various discrete-time signals and systems.	3
CO 3	Analyze domain specific discrete time systems and evaluate frequency response and stability analysis.	4
CO 4	Design and realize FIR and IIR filters.	5
CO 5	Apply the knowledge on the basic architectures of commercial digital signal processors to electrical and electronics engineering.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

1	What condition to be satisfied for the system is said to be stable?	1	LEVEL
1.	what condition to be satisfied for the system is said to be stable.	1	2
2.	State sampling theorem.	1	1
3.	Differentiate linear convolution and circular covolution.	2	2
4.	Determine the z- transform and ROC of the delayed unit step sequence, u (n-1).	2	2
5.	Write the expression for determine N point IDFT.	3	2
6.	Compare the number of complex additions and multiplications for N-point DFT and FFT.	3	2
7.	List out the different realization of FIR systems.	4	2
8.	Mention the properties of Chebyshev filter.	4	1
9.	What are the different stages involved in pipelining?	5	1
10.	Give an example for register addressing mode.	5	1

PART- B (5 x 14 = 70 Marks)

	technique.	(08)	1	3
(ii)	Determine if the system described by the following input-output equation is linear or non-linear. (a) $y(n) = x^2(n)$ and (b) $y(n) = n x(n)$	(06)	1	3
	(OR)			
	(ii)	 technique. (ii) Determine if the system described by the following input-output equation is linear or non-linear. (a) y(n) = x²(n) and (b) y(n) = n x(n) (OR) 	 technique. (ii) Determine if the system described by the following input-output (06) equation is linear or non-linear. (a) y(n) = x²(n) and (b) y(n) = n x(n) (OR) (i) Determine if the following system time environment of the following input-output (06) 	 technique. (ii) Determine if the system described by the following input-output (06) 1 equation is linear or non-linear. (a) y(n) = x²(n) and (b) y(n) = n x(n) (OR) (i) Determine if the following contents on time continue input-output (06) 1

(b) (i) Determine if the following systems are time variant or time-invariant. (06) 1 3 (a) y(n) = x(n) + x(n-2) and (b) y(n) = x(-n)

4

RBT

- (ii) Determine the values of power and energy of the following signal. Find (08) 1 3 whether the signals are power, energy or neither energy nor power signals (a) $x(n) = \sin(n\pi/4)$ and (b) $x(n) = e^{2n} u(n)$
- 12. (a) (i) Find the z transform of the sequence, $x (n) = (1/4)^{n-1}u (n-1)$.(07) 2 3(ii) Determine the z transform of $x (n) = r^n \sin(n\theta) u (n)$.(07) 2 3(OR)
 - (b) (i) Find the inverse Z transform of X (z) = log $(1 0.5z^{-1})$; ROC: |z| > 0.5 (06) 2 3 using differentiation property.
 - (ii) Find the convolution sum of two sequences, x (n) = $\{3, 2, 1, 2\}$ and (08) 2 3 h (n) = $\{1, 2, 1, 2\}$
- 13. (a) Determine the 8-point DFT of the sequence $x (n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$. (14) 3 4 Plot its magnitude and phase spectrum for the same.

(**OR**)

- (b) Using radix-2 DIT FFT algorithm, Determine the 8 point DFT of a sequence (14) 3 4 $x(n) = \{1,1,1,1,1,1,1\}$. Verify your results with radix-2 DIF FFT algorithm.
- 14. (a) Design a Chebyshev digital filter for the following specifications using (14) 4 4 bilinear transformation method.

$$0.8 \le \left| \mathbf{H} \left(\mathbf{e}^{\mathbf{j}\,\omega} \right) \right| \le 1 \qquad 0 \le \omega \le 0.2\,\pi$$
$$\left| \mathbf{H} \left(\mathbf{e}^{\mathbf{j}\,\omega} \right) \right| \le 0.2 \quad 0.6\,\pi \le \omega \le \pi$$

(b) Design an ideal high pass filter with a frequency response (14) 4

(**OR**)

$$H_{d}(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le |\omega| \le \pi$$
$$= 0 \text{ for } |\omega| \le \frac{\pi}{4}$$

Find the values of h(n) for N = 11. Find H (z).

15. (a) Explain with neat sketch about the internal architecture of TMS320C50 (14) 5 3 digital signal processor.

(**OR**)

(b) Describe in detail about the motor control applications using digital signal (14) 5 3 processors.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	LEVEL
16.	Compute the convolution of two finite duration sequences	(10)	2	4
	$h(n) = a^{n}u(n)$ for all n and $x(n) = b^{n}u(n)$ for all n, when			

(i) a=b and (ii) a \neq b.