Q. Code:770050

MAX. MARKS: 100

CO

DDT

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fifth Semester

EE18501 – POWER SYSTEM ANALYSIS

(Electrical and Electronics Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS

COURSE STATEMENT OUTCOMES Develop the equivalent model of power system and construct the admittance and impedance **CO1** 3 matrices **CO 2** Formulate the steady-state power flow problem and apply numerical solution algorithms for 4 analysis **CO 3** Compute short circuit capacity (SCC) of power system using matrix building algorithm 4 under balanced fault. **CO**4 Compute short circuit capacity (SCC) of power system using symmetrical components 4 under various faults. **CO 5** Formulate power system stability problem under large disturbance and apply numerical 4 solution algorithms for analysis.

PART- A (10 x 2 = 20 Marks)

· · · · · ·	-
(Answer all Ouestions)	

		CO	LEVEL
1.	Illustrate the changes in Y-bus if one line is added between the buses i and j.	1	2
2.	Prepare the single-phase equivalent circuit of three winding transformer.	1	2
3.	What will be the reactive power of the PV bus if it violates beyond the limit?	2	2
4.	What are the assumptions made in the derivation of the decoupled Load Flow algorithm?	2	2
5.	What is the application of Kron reduction techniques in the bus building algorithm?	3	2
6.	Why fault MVA computed in short circuit studies.	3	2
7.	Write the boundary conditions for the L-G fault.	4	2

RBT

LEVEL

			Q. Code:770050		
8.	Derive the equation to compute the fault current for the L-L fault.	4	1	2	
9.	What are the methods adapted to study the voltage stability of the power system?	5	5	2	
10.	Describe the need for computing the critical clearing time.	5	5	2	

PART- B (5 x 14 = 70 Marks)

11. (a) Prepare a per-phase schematic of the system in fig. and show all the (14) 1 3 impedance per unit on a 100 MVA, 132 KV base in the transmission line circuit. The necessary data are given as follows.

G1: 50MVA, 12.2KV, X=0.15 pu.

G2: 20MVA, 13.8KV, X=0.15 pu.

T1: 80MVA, 12.2/161KV, X=0.1 pu.

T2: 40MVA, 13.8/161KV, X=0.1 pu.

LOAD: 50MVA, 0.8 power factor lag operating at 154KV.

Evaluate the p.u impedance of the load.

(b) (i) Point out the Network and find the bus admittance matrix. The (1

(10) 1 3

Marks

СО

RBT

parameters of a four-system are as under:

Line	Sending	Receiving	Line	Line Charging
No.	end	end	Impedance (pu)	Admittance

Q. Code:770050

(4)

1

3

				(pu)
1	1	2	0.2+j0.8	j0.02
2	2	3	0.3+j0.9	j0.03
3	2	4	0.25+j1.0	j0.04
4	3	4	0.2+j0.8	j0.02
5	1	3	0.1+j0.4	j0.01

(ii) Generalize the impedance and reactance diagram. Explain with assumptions.

12. (a) Sketch the complete flowchart for the computation of unknown quantities (14) 2 4 of power system using the Gauss-Seidel method.

(OR)

- (b) Relate the competitiveness between different Load flow solutions (Newton (14) 2 4 Raphson, Gauss-Seidel, and Fast Decoupled method) in the following aspects:
 - Iteration count,
 - Convergence characteristics,
 - Equations types,
 - Polar and rectangular coordinates.
- 13. (a) 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to a (14) 3 3 feeder series impedance (0.12+j0.48) ohm/phase/km through a step-up transformer. The transformer is rated at 3 MVA, 6.6 kV/33kV, and has a reactance of 5%. Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 kV, when a 3-phase symmetrical fault occurs at a point 15km along the feeder.

(OR)

(b) (i) A single-line diagram of the power system is shown in Figure 4. The (7) 3 3 transmission line is 60 km long and has a reactance of $0.92\Omega/km$.

Draw the reactance diagram on a 30 MVA, 11kV base.

Figure.4

(ii)	Determine the actual fault current in KA for a 3-phase fault at bus 3	(7)	3	3
	using the Z bus building algorithm.			

14. (a)	Examine the sequence network for a double line to ground (LLG) fault.		4	4
	(OR)			
(b)	Obtain the expression for fault current for a Line-to-Line (L-L) fault taking	(14)	4	4

(b) Obtain the expression for fault current for a Line-to-Line (L-L) fault taking (14) 4 place through impedance Z_f in a power system. Draw the Corresponding sequence network.

15. (a) Examine the swing equation of a synchronous machine swinging against an (14) 5 4 infinite bus. Clearly state the assumption in deducing the swing equation

(OR)

(b) Explain the modified Euler method of analyzing multi-machine power (14) 5 4 systems for stability, with a neat flow chart.

<u>PART- C (1 x 10 = 10 Marks)</u>

	(Q.No.16 is compulsory)			
		Marks	CO	RBT LEVEL
16.	The symmetrical fault occurs on bus 4 of the system through Zf=j0.14 pu in	(10)	3	5
	the figure. Using the bus building algorithm, calculate the fault current, post-			
	fault voltages, and line flows.			
	G1, G2: 1 0 0MVA, 2 0 kV, X+ = 1 5%			
	Transformer T1, T2: X leak = 9%			
	Transmission line L1, L2, X+=10%.			

Q. Code:770050

