Q. Code:858529

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

EE18402 – DIGITAL LOGIC CIRCUITS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

(Regulation 2018/2018A)

TIME: 3 HOURS

MAX. MARKS: 100

RBT

COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Understand various aspects of Boolean algebra.	2
CO 2	Design and evaluation of combinational logic circuits.	5
CO 3	Design and evaluation of sequential logic circuits.	5
CO 4	Design and analysis of asynchronous sequential logic circuits through VHDL.	5
CO 5	Comprehend the operation and characteristics of memory devices and digital logic families.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

				CO	RBT LEVEI
1.	Conver	t the $(137255)_8$ to its equivalent number in base 16.		1	2
2.	State D	e-Morgan's laws of Boolean algebra.		1	2
3.	Draw t	he logic diagram of full adder circuit.		2	3
4.	Validat	te the importance of parity generator and parity checker logic circuits.		2	4
5.	Summa	arize the State Assignment Rules.		3	2
6.	Compa	re Mealy and Moore model.		3	2
7.	Differe	ntiate synchronous and asynchronous sequential circuits.		4	2
8.	Present	a VHDL coding for EX-OR logic gate.		4	3
9.	Define	fan-in and fan-out.		5	2
10.	Compa	re PAL with PROM.		5	2
		PART- B (5 x 14 = 70 Marks)			
			Marks	CO	RBT LEVEL
11. (a)) Simp	olify the following using K map and realize the reduced function using	(14)	1	2
	NAN	ND gates only. $\sum m(1,2,4,5,7,9,12,13) + . \sum d(3,8)$			
		(OR)			
(b)	(i)	Obtain the canonical SOP & POS of the following expression	(8)	1	2
		Y=A+AB+BC			
	(ii)	Obtain the truth table and minterms of the function. F=xy+xy'+y'z.	(6)	1	2

Q. Code:858529

12. (a)	Design and implement Binary to gray code converter.	(14)	2	4
(b)	 (OR) (i) Realize full adder logic with 3 : 8 decoder circuit. (ii) Design and implement 8X1 multiplexer using basic gates. 	(7) (7)	2 2	4 4
13. (a)	Design and implement Mod-12 Synchronous up counter using JK flip flops. (OR)	(14)	3	4
(b)	Design a four bit shift registers for SIPO and PISO mode of data transfer.	(14)	3	4
14. (a)	Design an Asynchronous sequential circuit that has two inputs X2 and X1 and one output Z. When X1=0, the output Z is 0. The first change in X2, that occurs while X1 is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to zero is 0.	(14)	4	4
	(OR)			
(b)	(i) Design a hazard free circuit for the following minterms. $E = \sum m(0.2, 6, 7, 8, 10, 12)$	(6)	4	4
	(ii) Draw the logic diagram and state table for the following state f	(8)	4	4
	equations.			
	$X_1^+ = X_0 I_1 + I_0 X_1$			
	$X_0^+ = X_0I_1 + \overline{X_1}\overline{I_1}I_0 + \overline{X_1}\overline{X_0}I_1$			
	$Z = X_0 I_1$			
15. (a)	Implement the following Boolean function with PLA	(14)	5	3
	$w(A, B, C, D) = \sum_{n=1}^{\infty} (2, 12, 13)$			
	$x(A,B,C,D) = \sum (7,8,9,10,11,12,13,14,15)$ $x(A,B,C,D) = \sum (0,2,2,4,5,6,7,8,10,11,15)$			
	$y(A, B, C, D) = \sum (0, 2, 3, 4, 5, 0, 7, 8, 10, 11, 15)$ $z(A, B, C, D) = \sum (1, 2, 8, 12, 13)$			
	(OR)			
(b)	Implement the NAND and EX-OR gate logic using CMOS Logic.	(14)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)	Marks	СО	RBT
16.	Design a 32X1 multiplexer logic with 8X1 multiplexers and a decoder.	(10)	2	LEVEL 5