CO

RBT

Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

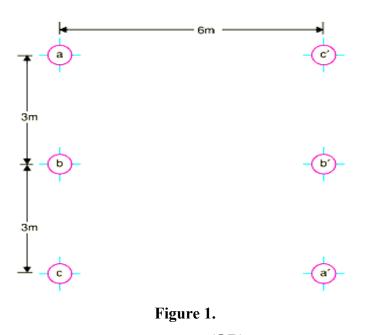
EE18401 – ELECTRIC POWER SYSTEM

(Electrical and Electronics Engineering) (Regulation 2018/2018A)

TIME: 3 HOURS MAX. N		ARKS: 100	
COURSE OUTCOMES	STATEMENT	RBT LEVEL	
CO 1	Acquire knowledge on DC/AC and overhead/underground transmission and distribution systems.	3	
CO 2	Calculate transmission line parameter calculations and their effect on power system.	4	
CO 3	Model Overhead Transmission lines / Underground cables and analyze their performance.	5	
CO 4	Understand the types, lay out and operation of substation.	3	
CO 5	Learn Indian Electricity Rules and Acts, Electrical Safety. Anti-theft measures and Demand side management.	4	
	Demand side management.		

PART- A(10x2=20Marks)

(Answer all Questions)


		00	LEVEL
1.	Discuss the different sources of energy available in nature.	1	2
2.	What are the different voltage levels in a common distribution system?	1	2
3.	A single phase line has two parallel conductors 1 metre apart. The radius of each	2	2
	conductor is 0.5 cm. Calculate the loop inductance per km of the line?		
4.	What is skin effect? Why is it absent in the D.C. system?	2	2
5.	What do you understand by long transmission lines? How capacitance effects are taken	3	2
	into account in such lines?		
6.	Why Ferranti effect is significant only in medium and long lines?	3	2
7.	What are the undesirable effects of too much voltage variation on a distribution circuit?	5	2
8.	Assess the advantages of ring main distributors.	5	2
9.	Compare AIS and GIS substation.	4	2
10.	Identify the ways by which power theft is carried out.	4	2
PART- B (5x 14=70Marks)			
	Marks	CO	RBT

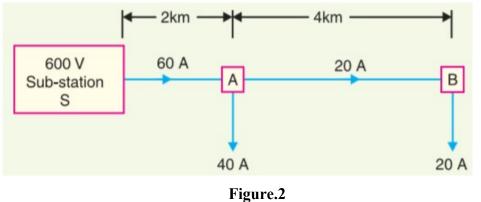
Q. Code: 594234

(ii) Examine the operation of Generation, Transmission & Distribution (7) 1 3 system in India.

(OR)

- (b) (i) Explain in detail with a block diagram of the working of Hydro power (7) 1 3 plant.
 - (ii) Explain the concept of energy generation using Wind Power in detail. (7) 1 3
- 12. (a) Find the Capacitance per phase per km of double circuit 3-phase line shown (14) 2 3 in Figure 1. The conductors are transposed and are of radius 0.75 cm each. The phase sequence is ABC.

- (b) A 3-phase transmission line is being supported by three disc insulators. The (14) 2 3 potentials across top unit (i.e., near to the tower) and middle unit are 8 kV and 11 kV respectively. Calculate (i) The ratio of capacitance between pin and earth to the self-capacitance of each unit (ii) Line voltage and (iii) String efficiency.
- 13. (a) Calculate A, B, C and D constants of a 3-phase, 50 Hz transmission line (14) 3 3 160 km long having the following distributed parameters $R = 0.15\Omega/km$; $L = 1.20 \times 10^{-3}$ H/km; $C = 8 \times 10^{-9}$ F/km; G = 0(OR)
 - (b) Show how regulation and transmission efficiency are determined for (14) 3 3 Page 2 of 4


medium lines using

(i) Nominal T method

(ii) Nominal π method

Illustrate your answer with suitable vector diagrams.

14. (a)	(i)	State and prove Kelvin's law for size of conductor for transmission.	(8)	5	3
		Discuss its limitations.			
	(ii)	The present trend is towards A.C for generation and distribution and	(6)	5	3
		D.C. for transmission. Discuss the reasons for it.			
		(OR)			
(b)	Two	tram cars (A & B) 2 km and 6 km away from a sub-station return 40 A	(14)	5	3
	and	20 A respectively to the rails. The sub-station voltage is 600 V D.C.			
	The	resistance of trolley wire is 0.25 Ω /km and that of track is 0.03 Ω /km.			
	Calc	ulate the voltage across each tram car.			
(b)	and The	(OR) tram cars (A & B) 2 km and 6 km away from a sub-station return 40 A 20 A respectively to the rails. The sub-station voltage is 600 V D.C. resistance of trolley wire is 0.25 Ω /km and that of track is 0.03 Ω /km.	(14)	5	3

- 15. (a) Analyze and Compare Ungrounded Neutral System and Grounded Neutral (14) 4 4 System.
 (OR)
 - (b) Analyze the several Bus-Bar arrangements that can be used in a sub-station (14) 4 4 with suitable diagrams.

<u>PART- C (1x 10=10Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	The towers of height 30 m and 90 m respectively support a transmission	(10)	3	5
	line conductor at water crossing. The horizontal distance between the			
	towers is 500 m as shown in Figure 3. If the tension in the conductor is			

1600 kg, Estimate the minimum clearance of the conductor and water and clearance mid-way between the supports. Weight of conductor is 1.5 kg/m. Bases of the towers can be considered to be at water level.

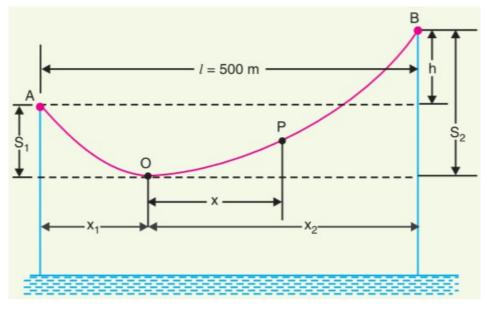


Figure 3
