Q. Code:820634

Reg. No.

TIME:3 HOURS

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Third-Semester

EE18303 – ELECTRICAL MACHINES I

(Electrical and Electronics Engineering)

(Regulation2018/2018A)

MAX. MARKS: 100

COU	RSE STATEMENT		RBT LEVEI	
CO 1	Analyze a magnetic circuit and determine the performance parameters.			
CO 2	Compute the performance parameters of a transformer and understand the function of			
CO 3	The various special transformers. Derive the force and torque of an electro-mechanical conversion device and analyze the performance.			
CO 4	Derive the characteristics and estimate the performance of DC generators.		4	
CO 5	Understand the necessity of Starting, controlling, braking, and the performance	of	4	
	different types of DC motors. PART- $A(10x^2=20Marks)$			
	(Answer all Questions)			
	C	0	RBT I FVFI	
1.	A coil carrying 500 turns gives rise to a flux 0f 1000 µwb when carrying a certain	1	3	
	current. If this current is reversed in 1/10 th of a second, Find the average emf induced in			
	the coil.			
2.	Discuss in brief the stacking factor.	1	3	
3.	Full load copper loss in a transformer is 1200 W. Find the copper loss at half load.	2	2	
4.	Interpret the Inrush current in a transformer.	2	3	
5.	Discuss why the practical energy conversion devices use the magnetic field as a	3	3	
	coupling medium rather than an electric field.			
6.	List the examples of the singly excited and doubly excited systems.	3	2	
7.	Discuss the effect of armature reaction on the terminal voltage of a DC shunt generator.	4	2	
8.	Write down the conditions under in which a DC shuntgenerator fails to excite.	4	2	
9.	Which method is preferred for controlling the speed of DC shunt motor at above the	5	2	
	rated speed? Justify.			
10.	Explain why Swinburne's test cannot be performed on DC Series Motor.	5	3	

Q. Code:820634

PART- B (5x 14=70Marks)

		Marks	CO	RBT LEVEL
11. (a)	A iron ring of circular cross section 10 cm^2 and mean circumference 30 cm has an air gap 2 mm. if the ring is wound with 500 turns, find the exciting current to establish a flux of 0.4 mwb in the air-gap. The relative permeability of iron may be assumed to be 2500.	(14)	1	4
(b)	(OR) Examine the typical B-H Curve and hysteresisloops and explain its Concept.	(14)	1	4
12. (a)	Develop the equivalent circuit of a single phase transformer referred to primary.	(14)	2	3
(b)	(OR) Explain the back to back method of testing for twoidentical single phase transformers.	(14)	2	3
13. (a)	Explain the concept of rotating MMF waves in ACMachines. (OR)	(14)	3	3
(b)	With neat sketch explain multiple excited magnetic field system in electromechanical energy conversion systems. Also obtain the expression for field energy in the system.	(14)	3	4
14. (a)	Explain the main parts of a DC generator and derive an expression for the EMF equation of a DC Generator.	(14)	4	4
(b)	(OR) Explain the different methods of excitation and the characteristics of a DC Generator with suitable diagram.	(14)	4	4
15. (a)	Discuss why the starting current is high at the moment of starting a DC Motor? With a neat sketch, explain about the three point starter required to start the DC Shunt Motor.	(14)	5	4
	(OR)			
(b)	Explain the construction, principle, working and equivalent circuit of a PMDC Motor.	(14)	5	4
	<u>PART- C(1x 10=10Marks)</u>			
	(Q.No.16 is compulsory)	X	60	DDT
		Marks	co	RBT LEVEL
16.	A 400 Volts DC Shunt Motor has a no load speed of 1450 rpm, the line	(10)	5	5
	current being 9. At full loaded condition, the line current is 75. If the shunt			
	field resistance is 200 Ω and armature resistance is 1 $\Omega.$ Evaluate the full			
	load speed.			
