Q. Code:556649

Reg. No.							

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Third Semester

EE18302 – ELECTROMAGNETIC THEORY

(Electrical and Electronics Engineering)

(Regulation 2018 / 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Implement vector calculus in electromagnetic field.	3
CO 2	Understand the fundamentals of electrostatics & magnetostatics.	2
CO 3	Analyze electromagnetic fields and potentials.	4
CO 4	Derive different forms of Maxwell's equation.	4
CO 5	Solve electromagnetic wave equations and analyze electromagnetic parameters.	4

PART-A(10x2=20Marks)

all Quartiana (1 -

	(Answer all Questions)	СО	RBT
1.	Given two vectors $P = 3i + 5j + 2k$ and $Q = 2i - 4j + 3K$. Determine the angular separation between them.	1	LEVEL 4
2.	Show that vector $\overrightarrow{H} = 3y^4 z^2 \overrightarrow{a_x} + 4x^3 z^2 \overrightarrow{a_y} + 3x^2 y^2 \overrightarrow{a_z}$ is solenoidal.	1	4
3.	Point charge Q1=300µC is located at (1,-1,-3) m experiences a force $F_1 = 8 \overline{a_x} - 8 \overline{a_y} + 4$	2	4
	\overline{a}_z N, due to point charge Q2 at (3, -3,-2) m. Determine Q2.		
4.	Write the relationship between potential gradient and electric field intensity.	2	2
5.	State Biot Savart's law.	3	2
6.	Analyze Poisson's equation and Laplace equation.	3	4
7.	Distinguish transformer and motional emf.	4	4
8.	Compare field theory and circuit theory.	4	4
9.	What is the electromagnetic wave?	5	2
10.	What will happen when the wave is incident obliquely over dielectric -dielectric	5	2
	boundary		

PART- B (5x 14=70Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	Define Gradient, Divergence and Curl. Explain their significance.	(8)	1	4

Q. Code:556649 (ii) Determine the Divergence of these vector fields (6) 1 4 (a) $P = x^2 yz \overline{a_x} + xz \overline{a_z}$ (b) $Q = \rho \sin \varphi \, \overline{a_{\rho}} + \rho^2 z \, \overline{a_{\varphi}} + z \cos \varphi \, \overline{a_z}$ (c) $T = \frac{1}{r^2} \cos\theta \,\overline{a_r} + r \sin\theta \cos\varphi \,\overline{a_{\theta}} + \cos\theta \,\overline{a_{\varphi}}$ **(OR)** Transform the vector A = $4\vec{a}_x - 2\vec{a}_y - 4\vec{a}_z$, at P (x=2, y=3, z=4) to 1 **(i)** (10)4 cylindrical coordinate system. Derive Coulomb's law in vector form. 1 (ii) (4) 4 A line of charge density ρ_L is uniformly distributed over an infinite length 2 4 (14) conductor. Derive its field intensity (**OR**) Consider the interface separating dielectric 1 (ε_{r1}) and dielectric 2 (ε_{r2}), 2 4 (14) Derive the relationships of the tangential components and normal components of Electric field intensity and electric flux density across the interface.

(b)

12. (a)

(b)

13. (a) Derive an expression of magnetic field intensity and magnetic flux density 3 (14)4 at any point along the axis of circular coil.

(**OR**)

(b)	(i)	Derive the energy stored in magnetic field and energy density.	(8)	3	4
	(ii)	Distinguish between scalar and vector magnetic potential.	(6)	3	4

Derive and explain Maxwell's equations both in integral and point forms. 14. (a) (14) 4 4

(**OR**)

- State and explain the Faraday's law of electromagnetic induction. Also **(b)** (14) 4 4 derive the statistically and dynamically induced emf equations.
- 15. (a) Derive the Poynting theorem from Maxwell's equation. (14) 5 4

(**OR**)

Define the wave and derive the wave equation for non-dissipative medium. 5 **(b)** (14) 4

PART-C (1x 10=10Marks)

(Q.No.16 is compulsory) Marks со RBT LEVEL 16. In a lossless dielectric for which $\eta = 60\pi$, $\mu_r = 1$, and (10)5 4 $\vec{H} = -0.1\cos(\omega t - z)\vec{a_x} + 0.5\sin(\omega t - z)\vec{a_y}A/m$. Calculate \mathcal{E}_r , Θ and \vec{E} .

Page 2 of 2