Q. Code: 733830

Reg. No.

B.E./ B. TECH. DEGREE EXAMINATIONS, MAY 2024 Fifth Semester

EE18004 – SMART GRID

(Electrical and Electronics Engineering)

(Regulation 2018 / 2018A)

TIME:3 HOURS MAX. MARKS: 1			
COURSE OUTCOMES	STATEMENT	RBT LEVEL	
CO 1	Analyze challenges and benefits of smart grids and its present developments.		
CO 2	Understand Smart measuring devices.	3	
CO 3	Acquire knowledge on advanced metering infrastructure and analyzing hardware implementation.	4	
CO 4	Design of smart grid power system.	4	
CO 5	Identify suitable computer network for smart grid applications.	4	

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Depict National Institute of Standards and Technology (NIST) conceptual model for smart grid.	1	3
2.	Compare and contrast conventional grid and smart grid systems.	1	4
3.	Brief on the function of wide area monitoring system in a smart grid.	2	2
4.	Enumerate the salient features of PMU.	2	2
5.	Interpret the impact of smart meters in outage management system.	3	4
6.	What is the purpose of a smart meter? Differentiate it against a conventional one?	3	4
7.	What is the need for slack bus in load flow studies?	4	2
8.	Differentiate contingency analysis and Congestion Management.	4	4
9.	Contrast local area network and wide area network.	5	4
10.	Categorize the cyber-attacks in smart grid.	5	4

PART-B (5x 14=70Marks)

			Marks	CO	RBT LEVEI
11. (a)	(i)	Interpret the opportunities, challenges and benefits in smart grid.	(10)	1	4
	(ii)	Brief on the need for a smart grid environment and its detail on the	(4)	1	4
		reasons.			
		(OR)			
(b)	Illus	strate the architecture of smart grid and examine the various stages of	(14)	1	4
	evol	ution in smart grid.			
12. (a)	Den	nonstrate in what way the Phasor Measurement Units (PMU) are	(14)	2	3
	usef	ul in implementation of smart grid technology.			

Q. Code: 7.	3	3	83	U
--------------------	---	---	----	---

	(OR)			
(b)	Correlate the operation of substation automation system and distribution automation system with suitable diagram.	(14)	2	3
13. (a)	Sketch and elaborate briefly the advanced metering infrastructure (AMI) with suitable functional block diagram	(14)	3	3
(h)	Explain about Advanced Metering infrastructure (AMI) drivers and	(14)	3	3
	benefits and list out the needs of AMI in the smart grid.	(1)	U	U
14 (a)	Examine the contingency and static converts accomment (SSA) in smart	(14)	1	4
14. (a <i>)</i>	grid with suitable single line diagram?	(14)	4	4
	(OR)			
(b)	With step by step procedure and flow chart explain the state estimation	(14)	4	4
	solution algorithm in an AC network?			
15. (a)	Illustrate in detail about the local area network and home area network	(14)	5	3
	architecture types in smart grid communication entities.			
	(OR)			
(b)	(i) Depict the various layers of internet protocol layers.	(7)	5	3
	(ii) Explain the different types of cyber attacks in smart grid and why	(7)	5	3
	cyber security is most important in smart grid.			
	PART- C (1x 10=10Marks)			
	(Q.No.16 is compulsory)			
		Marks	CO	RBT LEVEL
16.	A specification sheet of a smart meter states that its rated current is 100	(10)	3	5
	A and power dissipation is 3 W. It employs a current-sensing resistor of			
	200 $\mu\Omega$. When the load current is at the rated value of the meter,			
	calculate: (i) The neuron dissinction in all the other components of the mater:			
	(i) The voltage across the current-sensing resistor and gain			
	A specification sheet of a smart meter states that its rated current is 100			
	A and power dissipation is 3 W. It employs a current-sensing resistor of			
	200 $\mu\Omega$. When the load current is at the rated value of the meter,			
	calculate:			
	(i) The voltage across the current sensing resistor and gain			

Determine states of the three-bus power system shown in below Figure 1 with the following measurements:

Line data: $X_{12} = 0.25$ p.u, $X_{13} = 0.4$ p.u, $X_{23} = 0.2$ p.u.

The measured values of line flows are $M_{12} = 0.52$ MW, $M_{13} = 16$ MW, $M_{32} = 28$ MW.

Choose the base value as 100 MW, and the variance $\sigma = 0.01$ p.u.

Use dc state estimation to determine the angle at bus 1 and 2 with bus 3 as reference.
