Q. Code: 807155 Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Sixth Semester

EE18003 - DESIGN OF ELECTRICAL APPARATUS

(Electrical and Electronics Engineering) (Regulation 2018 / 2018A)

TIME:3 HOURS		MAX. MARKS: 100						
COURSE OUTCOMES	STATEMENT	RBT LEVEI						
CO 1	Design dc machines for the given set of specification.	4						
CO 2	Design transformers for the given set of specifications.	4						
CO 3	Design Induction motors for the given set of specifications.	4						
CO 4	Design synchronous machines for the given set of specifications.	4						

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEI
1.	Define specific Electric loading.	1	2
2.	State the properties which determine the suitability of a material for insulting materials.	1	1
3.	Explain field form factor.	1	2
4.	What are the losses in a DC machine?	1	1
5.	Why is the core of a transformer laminated ?	2	2
6.	Top and bottom surfaces of the transformer tank are not considered for the design of cooling tubes for transformer. Why?	2	2
7.	What are the factors to be considered for the choice of ampere conductors per metre in induction motor?	3	2
8.	State any two rules for selecting rotor slots of squirrel cage machines.	3	1
9.	Mention the advantages of single layer winding in synchronous motor.	4	1
10.	What is the use of damper winding in synchronous motor?	4	2

Q. Code: 807155

CO

RBT

Marks

PART- B (5x 14=70Marks)

11. (a) The stator of a machine has a smooth surface but its rotor has open type of (14) 1 4 slots with slot width W_s =Tooth width (Wt), W_t =14 mm and length of air gap l_g =3 mm.Find the effective length of air gap if the carter's coefficient = [$1/(1+5(l_g/W_s)]$.There are no radial ducts

(**OR**)

- (b) What are the limitations in the design of electrical apparatus? Explain them. (14) 1 2
- 12. (a) A design is required for a 100 KW, 4 poles, 600 rpm DC shunt generator, (14) 1 4 the full load terminal voltage being 220 V. If the maximum gap density is 0.83 wb/m² and the armature ampere conductors per metre are 30,000. Calculate suitable dimensions of armature core to give a square pole face. Assume that the full load armature voltage drop is 3% of the rated terminal voltage and that the field current is 1% of rated full load current. Ratio of pole arc to pole pitch is 0.67.

(OR)

- (b) Explain the effects of choice of poles in a DC machine on (1) Frequency of (14) 1 3 flux reversal (2) Weight of iron (3) Weight of copper (4) Length of commutator.
- 13. (a)(a)Calculate the kVA output of a single phase transformer from following(14)24data:

Core height=2.8 mDistance between core centresDiameter of circumscribining circle=0.56 mDistance between core centresNet iron area= 0.7 m^2

Area of Circumscribing circle

Current density = 2.3 A/mm^2 , window space factor = 0.27,

frequency = 50Hz.Flux density of core = 1.2 wb/m², distance between

core centres= 0.4m.

(**OR**)

- (b) State different methods of cooling the transformers and explain each method (14) 2 3 with relevant diagrams. State merits and limitations of each method.
- 14. (a) Derive the output equation of induction machine in terms of its main (14) 3 3 dimensions.

(OR)

- (b) Find the main dimensions of a 15kW,3φ 400 V, 50 Hz, 2810 rpm squirrel (14) 3 4 cage induction motor having an efficiency of 88% and full load power factor of 0.9. Specific magnetic loading is 0.5 wb/m² and specific electric loading =25000 A/m. Take rotor peripheral speed as approximately 20m/sec at synchronous speed.
- 15. (a) Discuss the factors affecting the choice of specific electric loading and (14) 4 3 magnetic loading in an alternator.

(**OR**)

(b) Compute the main dimensions of a 1000 kVA, 50 Hz, 3φ; 375 rpm (14) 4 4 alternator. The average air gap density is 0.55 wb/m² and the ampere conductors per metre are 28000.Use rectangular poles. Assume the ratio of core length to pole pitch equal to 2. Maximum permissible peripheral speed is 50 m/sec. The runaway speed is 1.8 times the synchoronous speed.

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	Derive the output equation of a DC generator and point out salient features	(10)	1	3
	of this equation.			

Q. Code: 807155