Q. Code:946979

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

EC22403 – DISCRETE TIME SIGNAL PROCESSING

(Electronics and Communication Engineering)

(Regulation 2022)

TIME: 3 COURSE	3 HOURS MAX. MARKS: 10 STATEMENT	0 RBT
CO 1	Analyze the frequency spectrum of Discrete time signal using Discrete Fourier Transform and Fast Fourier Transform.	4
CO 2	Interpret the characteristics of FIR filters and articulate the design of Finite Impulse Response filters for filtering undesired signals.	3
CO 3	Observe the IIR filter characteristics and design IIR filters according to the user specifications.	3
CO 4	Assess the word length effects in signal processing systems.	4
CO 5	Explore the architecture of Digital Signal Processor and inspect the various applications of Digital Signal Processing.	3

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEI
1.	Obtain the circular convolution of the following sequences, $x[n]=\{1,2,1\}$ and $h[n]=\{1,-2,1\}$	1	3
2.	How many additions and multiplications are required to compute 64-point radix-2 FFT algorithm?	1	2
3.	If $x(n) = \{1,0,2,3\}$, then $X(k) = \{, -1+3j,, -1+3j,\}$	1	3
4.	Compute the twiddle factor, W_{64}^{16}	1	2
5.	Give the equations for causal and non-causal Hamming window.	2	2
6.	For causal linear phase FIR filter, the partial filter coefficients are $h[0] = 1$, $h[1] = 3$ and $h[2] = 2$. Find the remaining coefficients of $h(n)$. Assume N=5.	2	2
7.	Determine the frequency response of causal FIR filter with $h[n] = \{0.75, 0.25, 1, 0.25, 0.75\}$.	2	2
8.	Draw the transversal structure of given system function $H(z) = 1 + 2z^{-1} - 3z^{-2} + 4z^{-3}$	2	3
9.	Why is prewarping required in IIR filter design?	3	3
10.	What is the advantage of Direct form-II structure over Direct form-I structure?	3	3
11.	Interpret the stability condition of an IIR filter.	3	3

Q. Code:946979

3

(10)

2

12.	What are the techniques that can be employed for digitizing the transfer function of an analog filter?	3	2
13.	Express the fraction 7/8 and -7/8 in sign magnitude and 2's complement representation.	4	3
14.	What is the effect of quantization on pole locations?	4	2
15.	Quantize 0.0625_{10} by rounding off to 3 bits and hence calculate the roundoff error.	4	2
16.	Sketch the product quantization noise model of II order IIR system.	4	3
17.	If the sampling rate of a sequence x[n] is 20 samples/sec, what will be the sampling rate after decimating by a factor of 4?	5	3
18.	Compare fixed point and floating point processor.	5	2
19.	Draw a simple speech recognition model.	5	3
20.	Find the output of following block diagram.	5	2

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT LEVEL
21. (a)	Compute 8-point DFT using DIF-FFT algorithm for the following sequence,	(10)	1	4

 $x[n] = \begin{cases} 1 \text{ for } 0 \le n \le 7 \\ 0 \text{ for otherwise} \end{cases}$

(OR)

- (b) Find the response of LTI system for $x[n]=\{1,2,-1,2,3,-2,-3,-1,1,1,1,2,-1\}$ and (10) 1 4 h[n]= $\{1,2,1\}$ using overlap-add method
- **22. (a)** The desired response of a filter is,

$$H_{d}(e^{j\omega}) = 1. e^{-j3\omega}, \qquad -3\pi/4 \le \omega \le 3\pi/4$$

$$0$$
 , $3\pi/4 \le |\omega| \le \pi$

Identify the filter type and order of the filter and determine the impulse response and frequency response of the filter using Hanning window.

(OR)

Page 2 of 4

Q. Code:946979

- (b) Design a linear phase FIR-High pass filter with $\omega_c = 2\pi/3$ rad/sample for N=7 (10) 2 3 using frequency sampling method and determine filter coefficients.
- 23. (a) Evaluate H(z) of a digital low pass Butterworth filter using bilinear (10) 3 3 transformation for the following specifications.
 (i) -3dB cutoff at pass band edge of 0.5π rad/sample
 (ii) magnitude down at least 15dB at ω = 0.75π rad/sample

(OR)

(b) (10) 3 3 Design an IIR analog Chebyshev low pass filter using a Impulse invariant transformation for the following specifications

 $0.8 \le |H(e^{j\omega})| \le 1 \qquad , \qquad 0 \le \omega \le 0.2\pi$

 $|H(e^{j\omega})| \leq 0.2 \ , \qquad 0.6\pi {\leq} \omega {\leq} \pi$

24. (a) Consider the transfer function $H(z)=H_1(z)$. $H_2(z)$ where $H_1(z)=1/(1-0.5 z^{-1})$ (10) 4 3 and $H_2(z)=1/(1-0.6 z^{-1})$.Find the output round off noise power. Assume word length is 4 bits(excluding sign bit). Draw the direct form-II structure.

(OR)

(b) A digital system is characterized by the difference equation (10) 4 3 y[n]=0.5y[n-1]+x[n]. Determine the dead band of the system when x[n]=0.875 for n=0

= 0 for n > 0

and y[n]=0 for n<0. Assume 4- bit sign magnitude representation (Including sign bit)

- 25. (a) Explain with a neat diagram and mathematical equations, how the sampling (10) 5 3 rate will be reduced by a factor D.
 - (OR)
 - (b) Explain how digital filters are used for Image processing. (10) 5 3

 $\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.No.26 \text{ is compulsory})}$

Marks CO RBT LEVEL 26. Compute the response of LTI filter for the following sequences, $x[n] = \{1,2,2\}$ (10) and $h[n]=\{2,-1\}$ using DFT and IDFT method.

Q. Code:946979

1

4