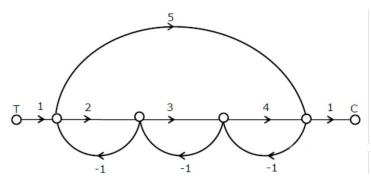
Q. Code: 638119

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fourth Semester


EC22402 – LINEAR CONTROL SYSTEMS

(*Electronics and Communication Engineering*)

(Regulation 2022)

TIME: 3	HOURS MAX. MARKS: 1	100					
COURSE OUTCOMES	STATEMENT	RBT LEVEL					
CO 1 Compute the transfer function of different physical systems.							
CO 2 Compute the time response and analyze the stability using various techniques.							
CO 3 Illustrate the frequency response characteristics of open loop and closed loop systems.							
CO 4 Illustrate the state space model of a physical system.							
CO 5 Design compensators to satisfy the desired specifications of control systems.							
	PART- A (20 x 2 = 40 Marks)						
	(Answer all Questions)						
	CO	RBT LEVEL					
1. Defi	ne transfer function. 1	2					

- 2. Compare open-loop and closed-loop systems.
- 1 3. What are the basic elements used for modeling mechanical translational systems? 2
- 4. Calculate the number of loops in the signal flow graph.

- What is the transient and steady-state response of a control system? 5.
- Determine the damping factor and natural frequency for the given second order closed 6. 2 3 loop systems transfer function $G(s) = \frac{100}{S^2 + 10S + 100}$.
- 7. How centroid of the asymptotes found in the root locus technique? 2 3

3

1

1

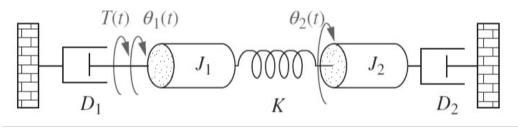
2

2

3

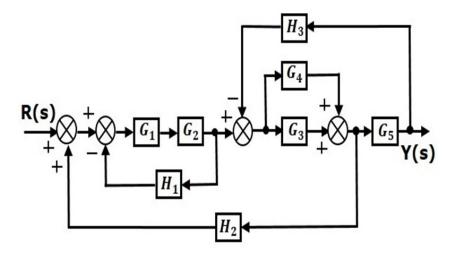
Q. Code: 638119

Marks


СО

RBT LEVEL

8.	What is a proportional controller?	2	2
9.	Define phase margin.	3	2
10.	Find the corner frequency of $G(s) = \frac{10}{s(1+0.5s)}$	3	4
11.	Draw the approximate polar plot for a Type 0 second order system.	3	3
12.	Define Gain cross over?	3	2
13.	List the advantages of state space analysis.	4	2
14.	What is state variable?	4	2
15.	Write the properties of state transition matrix.	4	2
16.	Define State equation.	4	2
17.	What is the need for compensators?	5	2
18.	Draw the pole-zero plot of lead compensator.	5	3
19.	List the effects of adding lag compensator in the system.	5	2
20.	When is lag lead compensator is required.	5	2


PART- B (5 x 10 = 50 Marks)

21. (a) Write the differential equation governing the mechanical rotational systems (10) 1 3 and find the transfer function, $\frac{\theta_2(s)}{T(s)}$.

(OR)

(b) Determine the closed loop transfer function C(S)/R(S) of the system whose (10) 1 3 block diagram is shown below.

22. (a) A unity feedback system has the forward transfer function (10) 2 3 $G(s) = \frac{K(2s+1)}{s(5s+1)(1+s)^2}$. The input r(t)=(1+6t) is applied to the system. Determine the minimum value of K if the steady-state error is to be less than 0.1.

(OR)

(b) The open loop transfer function of a unity feedback system is given by (10) 2 3 $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$. Sketch the root locus of the system.

23. (a) Sketch the Bode plot and hence find the Gain cross over frequency, Phase (10) 3 3 cross over Frequency, Gain margin and Phase margin.

$$G(s) = \frac{10(1+0.1s)}{s(1+0.01s)(1+s)}$$

(**OR**)

(b) Sketch the polar plot for the following transfer function and find the Gain (10) 3 3 margin and Phase margin.

Q. Code: 638119

Marks

CO

RBT

$$G(s) = \frac{400}{s(s+2)(s+10)}$$

24. (a) A system is characterized by a transfer function

$$\frac{Y(s)}{U(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$$

Find the state and output equation in matrix form

(**OR**)

Examine the controllability and observability of the system with a state **(b)** (10)4 3 equation.

	0	1	0		0	
$\dot{x} =$	-	0	1	x+	0	u
	0	-2	-3	x+	1	
y	=[3	34	· 1] <i>x</i>	- (+] <i>u</i>	•

The open loop transfer function of the uncompensated system is 25. (a) (10)5 4 $G(s) = \frac{5}{s(s+2)}$. Design a suitable lag compensator for the system so that the static velocity error constant K_v is 20/sec, the phase margin is at least 55^o and the gain margin is at least 12db.

(**OR**)

The open loop transfer function of the uncompensated system is 5 **(b)** (10)4 $G(s) = \frac{K}{s(s+1)(s+2)}$. Design a suitable lead compensator for the system so that the static velocity error constant $K_v = 10$ /sec, the phase margin = 50^o and the gain margin ≥ 10 db.

PART- C (1 x 10 = 10 Marks) (Q.No.26 is compulsory)

LEVEL 26. Construct the root locus and determine the stability of the system whose (10)2 5 $s^{6}+2s^{5}+8s^{4}+12s^{3}+20s^{2}+16s+16=0$. Also is characteristic equation determine the number of roots lying on right half of s-plane, left half of splane and on imaginary axis.

(10)3 4