Q. Code:736937

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

EC22401 – ANALOG INTEGRATED CIRCUITS AND ITS APPLICATIONS

(Electronics and Communication Engineering)

(Regulation 2022)

TI	ME: 3 HOURS MAX. MAJ	RKS:	100
	RSE STATEMENT DMES		RBT LEVEL
CO 1	Infer the DC and AC characteristics of operational amplifiers and its effect on c and their compensation techniques.	output	2
CO 2	Elucidate and analyze the linear and non-linear applications of an opamp.		4
CO 3	Classify and comprehend the working principle of data converters.		4
CO 4	Illustrate the function of application specific ICs such as Analog multiplier, PLL and its application in communication		2
CO 5	Explain the working of multivibrators using IC 555, the special function ICs su Voltage regulators, buck-boost converters, A/V amplifiers etc.	ch as	3
	PART- A (20 x $2 = 40$ Marks) (Answer all Questions)		
		CO	RBT
1.	List the assumptions to be made for op-amp analysis.	1	2 2
2.	Define CMRR. Justify why CMRR should be high for op-amp.	1	3
3.	Draw the circuit diagram of the Voltage follower and output waveform if the input is a sinusoidal signal.	1	2
4.	Explain the virtual ground concept in op-amp.	1	2
5.	Mention two linear and two non-linear applications of an op-amp.	2	2
6.	Illustrate how a differential amplifier using op-amp can be converted into a subtractor circuit.	2	3
7.	Point out the need for converting a first order filter into a higher order filter.	2	3
8.	Sketch the circuit diagram of antilog amplifier using an op-amp.	2	2

			Q. Code:73	
9.	Show the block diagram of sample and hold circuit.	-	3	2
10.	List out the specifications of DAC.		3	2
11.	State the advantages of R-2R ladder DAC over binary weighted type DAC.		3	2
12.	Obtain the number of comparators required for realizing a 4-bit flash ADC.		3	3
13.	Summarize the basic analog multiplication techniques.		4	2
14.	Give the limitations of emitter coupled transistor pair analog multiplier.		4	2
15.	State the various applications of PLL.		4	2
16.	Interpret the relation between capture range and lock range in a PLL.		4	3
17.	Justify the need for voltage regulator ICs.		5	3
18.	Draw the functional block diagram of IC 723 regulator.		5	2
19.	List the characteristics and applications of Optocoupler.		5	2
20.	Analyze the purpose of one shot multivibrator.		5	2
	$PARI - B (5 \times 10 = 50 \text{ Marks})$	Marks	CO	RBT LEVEL
21. (a)	Construct the BJT differential amplifier and explain its operation. Derive the expression for CMRR.	(10)	1	3
(b)	(OR) List and explain the DC characteristics of an operational amplifier.	(10)	1	3
22. (a)	With a suitable circuit diagram, explain the operating principle of an instrumentation amplifier and derive its gain.	(10)	2	4
(b)	 (OR) (i) Analyse the first order Low pass filter and derive its voltage gain. (ii) Design a first order low pass Butterworth filter using operational 	(6) (4)	2 2	4 4

amplifier for the upper cut off frequency of 2.5kHz. Assume the value of capacitor to be $0.1 \mu F.$

23. (a)	Analyze the working of R-2R ladder type DAC.		3	3
	(OR)			
(b)	(i) Describe about the Successive approximation type ADC with neat sketch.	(6)	3	3
	(ii) Show the conversion sequence using Successive approximation type ADC for an input of 110110110110.	(4)	3	3
24. (a)	Analyze the Gilbert's multiplier cell with a neat circuit diagram. (OR)	(10)	4	3
(b)	Illustrate the operation of VCO with block diagram. Derive the expression for f_0 and voltage to frequency conversion factor.		4	3
25. (a)	Explain the working of Astable Multivibrator. List applications in detail.	(10)	5	3
	(OR)			
(b)	(i) Discuss in detail the working principle of switching regulator.	(6)	5	3
	(ii) Examine the operation of frequency to voltage converters.	(4)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.26 is compulsory)			

		Marks	CO	RBT LEVEL
26.	Design a practical integrator circuit with a D.C. gain of 10 to integrate a	(10)	2	5
	square wave of 10 kHz.			
