Q. Code:868285

Reg. No.

B.E./B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

EC22305 – SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

(Regulation 2022)

2 1101100

MAN MADIZS, 100

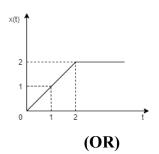
TIM	TIME: 3 HOURS MAX. MARKS:			0
COU OUTCC CO 1 CO 2 CO 3 CO 4 CO 5	RSE OMES C C C C C C C C C C C C C C C C C C C	STATEMENT Categorize signals and systems based on their properties. Analyze the characteristics of continuous time signals using Fourier and Lap ransform. Characterize the Linear Time Invariant systems in time and frequency domain. Analyze the characteristics of discrete time signals using Fourier transform an ransform.	place	RBT LEVEL 3 4 3 4 3
05		Characterize the Linear Shift Invariant systems in time and frequency domain.		3
1. 2.		PART- A (20 x 2 = 40 Marks) (Answer all Questions) the folded version of $x[n]=u[n+3]$.	co 1 1	RBT LEVEL 2 2
3.	The inp of the s	put-output relationship of a system is given by $y[n]=x[n-2]$. Check the stability system.	1	2
4.	Find th	e fundamental period of the signal $x(t) = 2\cos(10t+1)$.	1	2
5.		arseval's theorem.	2	2

Given x(t) and X(s) are Laplace transform pair, determine the Laplace transform of 6. 2 3 $\frac{d}{dt}x(t)$ using suitable property.

Let x(t) and $X(j\omega)$ be Fourier transform pair, evaluate the Fourier transform of x(-t). 2 7. 3

Determine the Laplace transform (including region of convergence) of a 2 3 8. signal, $x(t) = (1 - e^{-3t})u(t)$.

9.	State the condition of ROC for which the given continuous time LTI system with). Co	de:86 3	58285 2
	$H(s) = \frac{s}{s^2 + s - 6}$ will be stable and causal.			
10.	A causal LTI system has an impulse response, $h(t)=e^{-4t}u(t)$. Determine its freque	ncy	3	3
11.	response. A continuous time LTI system is characterized by a differential equation,		3	3
	$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} + 2 y(t) = \frac{d}{dt} x(t), \text{ determine the transfer function.}$		C	U
12.	Find the response of an LTI system with impulse response, $h(t) = \delta(t-3)$ and input		3	3
	x(t)=u(t).			
13.	Find DTFT of the given sequence, $x[n] = \{1,2,2,1\}$.		4	3
14.	Compute <i>z</i> transform of $x[n] = i$ using appropriate properties.		4	3
15.	What is the minimum sampling frequency required to sample a continuous time signate	al,	4	2
	$x(t) = \sin 2000 \pi t . \cos 4000 \pi t ?$			
16.	Determine the initial and final value of $X(z) = \frac{2 z^{-1}}{1 - 1.8 z^{-1} + 0.8 z^{-2}}$.		4	3
17.	Find the frequency response of a discrete time system described by the difference		5	3
	equation, $y[n] - \frac{1}{2}y[n-1] + \frac{1}{4}y[n-2] = x[n] + x[n-1].$			
18.	An LTI system is characterized by a system function, $\frac{H(z) = \frac{z(3z-4)}{\left(z-\frac{1}{2}\right)(z-3)}}{\left(z-\frac{1}{2}\right)(z-3)}$. Specify the	e	5	2
	poles and zeros of the system and hence discuss about its stability.			
19.	Find $y[n]$, if $x[n] = h[n] = \{1, 1, -1\}$.		5	3
20.	The system function of a discrete-time system is $H(z)=5z^{-1}-3z^{-2}$. Find the respons the system.	e of	5	3
	PART- B (5 x 10 = 50 Marks)	Marks	СО	RBT
01		(5)	4	


Identify whether the signal, $x[n]=8\cos\left(\frac{n\pi}{4}\right)$ is periodic or 21. (a) (5) 1 3 (i)

not. If periodic, find its fundamental period.

(ii) Find below a continuous time signal x(t). Determine whether (5) 1 3

3

the given signal is energy or power.

(b) Given the input - output relationship of LTI systems, specify which of the (10) 1 3 following properties hold for the given systems. (i) Linear (ii) Time - Invariant (iii) Stable (iv) Causal (v) Memoryless

(a)
$$y(t) = (2 + sint)x(t)$$

(b) $y[n] = n^2 x[n-1]$

22. (a) Find x(t), given its Laplace transform $X(s) = \frac{s+6}{(s+1)(sii2-6s+8)i}$. (10) 2 3

(b) Determine the Fourier transform of $x(t) = e^{-a \vee t \vee i \cdot i}$, a > 0 and hence find the (10) 2 3 Fourier transform of x(t+3).

23. (a) Consider a causal LTI system characterized by the differential equation, (10) 3 $\frac{d^2 y(t)}{dt^2} - 9 \frac{dy(t)}{dt} + 14 y(t) = 2 x(t).$ Find the frequency response of the system

and also the response of the system to an input $x(t) = e^{4t}u(t)$.

(OR)

(b) Consider an LTI system characterized by the differential equation, (10) 3 3

$$\frac{d^2 y(t)}{dt^2} - 4 \frac{dy(t)}{dt} - 12 y(t) = \frac{d^2 x(t)}{dt^2} - 8 \frac{dx(t)}{dt} + 15 x(t)$$

Determine the impulse response such that the system is,

i. Stable

ii. Causal

iii. Neither stable nor causal.

24. (a) Compute DTFT of the following signals using appropriate properties. (10) 4 3

(i)
$$x[n] = \left(\frac{1}{3}\right)^{n-3} u[n-3]$$

(ii) $x[n] = u[n+1]$

Q. Code:868285

RBT

Marks

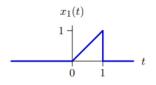
СО

(**OR**)

(b) Determine inverse ztransform of
$$X(z) = \frac{3+2z^{-1}+z^{-2}}{1-3z^{-1}+2z^{-2}}$$
 and also draw its ROC (10) 4 3 under causal condition.

25. (a) Consider a causal LTI system characterized by a difference equation, (10) 5 3 $y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$. Find the response of the system to an input $x[n] = \left(\frac{1}{3}\right)^n u[n]$

(OR)


(b)
A system function is given by
$$H(z) = \frac{z^2}{(z - \frac{1}{4})(z - \frac{1}{2})}$$
, ROC: $|z| > \frac{1}{4}$ (10) 5 3

Find impulse response and unit step response.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

26. Determine the Laplace transform and associated region of convergence for (10) 2 3 the signal $x_1(t)$ shown below.

