Q. Code:518220

Reg. No.

TIME · 3 HOURS

MAX. MARKS: 100

		100			
COURSE OUTCOMES	STATEMENT	RBT LEVEL			
CO 1	Apply the fundamentals of different coordinate systems to relate the electromagnetic concepts in Engineering.	3			
CO 2	Evaluate the physical quantities of electromagnetic fields in different media.	4			
CO 3 Analyze the boundary conditions for different media and to design the storage devices.					
CO 4	4 Justify concepts of electromagnetic waves means of transporting energy in dielectric medium.				
CO 5	Analyze the concept of Plane waves in homogeneous medium.	3			
	PART- A (20 x 2 = 40 Marks)				
	(Answer all Questions)				
	СО	RBT			
		LEVEL			

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester EC22303 – ELECTROMAGNETIC FIELDS AND WAVES (Electronics and Communication Engineering) (Regulation 2022)

1.	Give the Cartesian co-ordinates of a point whose cylindrical co-ordinates are (1,45°,2).	1	LEVEL 3
2.	An infinite sheet in X-Y plane extending from $-\infty$ to ∞ in both directions has a uniform charge density of 10 nC/m ² . Find the electric field at z=1.0 cm.	1	3
3.	Given a vector $\vec{A} = 3x \vec{a_x} + y \vec{a_y} + 5z \vec{a_z}$, find the divergence of A.	1	3
4.	Give the principle of Superposition.	1	2
5.	Write the expression of differential magnetic field intensity due to differential current element according to Biot-Savart Law.	2	2
6.	If a magnetic field intensity $\vec{H} = 8\vec{a}_x + 3\vec{a}_y$, A/m exists at a point in free space, What is the magnetic flux density at that point.	2	3
7.	Give the relationship between Magnetic field intensity and Magnetic flux density.	2	2
8.	State Ampere's Circuital Law and write the expression in differential form.	2	2
9.	State the boundary conditions in Magnetic field.	3	2
10.	Calculate the capacitance of parallel plate capacitor if A=80cm ² , d=3mm and relative permittivity =14.	3	3
11.	Check and verify Laplace's equation for the following vector $V = 3x^2 + 5y^2 - 8z^2$.	3	3
12.	Express the continuity equation in integral and differential form.	3	3
13.	Examine the importance of Faraday's law of electromagnetic induction.	4	2
14.	Brief about the Gauss law for electric field.	4	2
15.	Write the point form of Maxwell's equation derived from Ampere's Circuital Law.	4	2
16.	What is the significance of displacement current density?	4	2

	Q. (Code:5	51822	20
17.	Calculate the velocity of a plane wave in a lossless medium having a n	elative	5	3
	permittivity of 4 and a relative permeability of 1.2.		_	
18.	What is meant by uniform plane wave?		5	2
19.	Calculate the intrinsic impedance of free space.		5	3
20.	Write expressions for instantaneous and complex poynting vector.		5	2
	PART- B (5 x 10 = 50 Marks)			
		Marks	; CO) RBT LEVEL
21. (a)	Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_L in air.	(10)	1	3
	(OR)			
(b)	State and Prove Gauss law and explain any one of its application.	(10)	1	3
22. (a)	Derive the magnetic field intensity in the different regions of co-axial cable by applying Ampere's circuital law.	(10)	2	3
	(OR)			
(b)	Derive an expression for magnetic field intensity due to a linear conductor of finite length carrying current I at a distant point P. Assume R to be the distance between conductor and point P. Use Biot Savart's law.	(10)	2	3
23. (a)	Derive the expressions for Poisson's and Laplace Equation and determine whether the potential field $V = 8\rho^2 \sin 2\varphi$ satisfy the Laplace's equation or not.	(10)	3	3
(b)	(OR)	(10)	2	3
(D)	Derive the expressions for boundary conditions in Magnetic fields.	(10)	3	3
24. (a)	Derive the Maxwell's first and second equations in the integral and differential forms.	(10)	4	4
	(OR)			
(b)	An electric field in a medium which is source free is given by $E = 1.5\cos(108t - \beta z)\vec{a_x}$ V/m. Find B,H and D. Assume $\varepsilon_r = 1, \mu_r = 1$ and $\sigma = 0$.	(10)	4	4
25. (a)	State and Prove poynting theorem.	(10)	5	3
	(OR)			
(b)	Derive the wave equations for conducting medium in phasor form.	(10)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.26 is compulsory)			
		Marks	CO	RBT LEVEL
26.	Find curl H and gradient of H, if H=2r $\cos\phi \vec{a_r}$ - 4r $\sin\phi \vec{a_{\phi}}$ + 3 $\vec{a_z}$	(10)	1	5
