Q. Code:547794

Reg. No.						

B.E/B.TECH DEGREE EXAMINATIONS, MAY 2024 Third Semester

EC22302 – DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering)

(Regulation 2022)

TI	ME: 3 HOURS M	AX. MARKS: 10	K. MARKS: 100		
COUH OUTCO	RSE STATEMENT DMES		RBT LEVEL		
CO 1 CO 2	Examine different methods used for simplification of Boolean expressions Design combinational logic circuits using logic gates.		2 3		
CO 3	Design sequential logic circuits using flipflops.		3		
CO 4	Investigate and design synchronous and asynchronous sequential circuits.		4		
CO 5	Apply the digital circuits for solving real world problems and implement using different types of PLD.	the logic function	4		
	PART- A (20x2=40Marks) (Answer all Ouestions)				
		CO	RBT LEVEL		
1.	Simplify F (A, B) = $A^{1}B + AB + AB^{1}$.	1	2		
2.	Express $F = Y + XZ$ in canonical SOP.	1	2		
3.	Implement using NOR gates only, $F = AB + A^{1}B^{1}$.	1	2		
4.	What is Principle of Duality?	1	2		
5.	Draw the logic diagram of Half Adder and write its sum and carry expression	. 2	2		
6.	What is barrel shifter?	2	2		
7.	Compare demultiplexer and decoder.	2	3		
8.	What is priority encoder?	2	2		
9.	Write the characteristic equation of JK and D flip flop.	3	2		
10.	Convert T flip flop to D flip flop.	3	2		
11.	Differentiate Synchronous and Asynchronous counter.	3	3		
12.	How many flip flop's are required to build a binary counter that counts from	0 to 511? 3	2		
13.	Compare Mealy and Moore Machines.	4	3		
14.	Define state diagram.	4	2		
15.	Define Race condition.	4	2		
16.	What are Hazards?	4	2		
17.	What is the binary value for 14? Express this in to gray code.	5	3		
18.	Draw the logic circuit of a 1-bit comparator.	5	2		

		Q. Cod	le:54	7794
19.	List the advantages of PLD's.		5	2
20.	What are the advantages of pipelined adder?		5	2
	PART- B (5x10=50Marks)	74 1	60	DDT
		Marks	0	LEVEL
21. (a) Minimize the following function using K-map.	(10)	1	3
	F (A, B, C, D, E) = $\sum m (0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27)$			
	(OR)			
()	b) Implement AND, OR, NOT and NOR gate using only NAND gate.	(10)	1	3
22. (:	a) Design a BCD adder and explain its working with necessary block diagram.	(10)	2	3
	(OR)			
((b) Explain the operation of a 8 X 1 Multiplexer and Implement the following	(10)	2	3
	function using a suitable Multiplexer.			
	F (A, B, C, D) = $\sum m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)$			
23. (a) (i) Convert JK flip flop in to D flip flop.	(5+5)	3	3
	(ii) Convert T flip flop in to JK flip flop.			
	(OR)			
ն	Design a synchronous counter to count the sequence 0, 4, 2, 1, 6, 0,	(10)	3	3
(···	using JK flip flop.		-	-
24. (:	a) Design a synchronous sequential logic circuit using D flip flops for the	(10)	4	3

following state diagram. Use state reduction if possible.

(OR)

Q. Code:547794

Design a Mealy machine for a binary input sequence such that if it has a	(10)	4	3
substring 101, the machine output A, if the input has substring 110, it			
outputs B otherwise it outputs C.			
Design a 4-bit binary to gray code converter and draw its logic diagram.	(10)	5	3
(OR)			
Design a sequence detector which detects the sequence "01110"	(10)	5	3
(with one bit overlapping) using D flip-flop.			
PART- C (1x 10=10Marks)			
	Design a Mealy machine for a binary input sequence such that if it has a substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C. Design a 4-bit binary to gray code converter and draw its logic diagram. (OR) Design a sequence detector which detects the sequence "01110" (with one bit overlapping) using D flip-flop. PART- C (1x 10=10Marks)	Design a Mealy machine for a binary input sequence such that if it has a (10) substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C. Design a 4-bit binary to gray code converter and draw its logic diagram. (10) (OR) Design a sequence detector which detects the sequence "01110" (10) (with one bit overlapping) using D flip-flop. (10) PART- C (1x 10=10Marks)	Design a Mealy machine for a binary input sequence such that if it has a (10) 4 substring 101, the machine output A, if the input has substring 110, it outputs B otherwise it outputs C. Design a 4-bit binary to gray code converter and draw its logic diagram. (10) 5 (OR) Design a sequence detector which detects the sequence "01110" (10) 5 (with one bit overlapping) using D flip-flop. PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

		5	,	Marks	CO	RBT LEVEL
26.	Implement a full adder with two 4 x1 Multiplexers.			(10)	2	4

Q. Code:547794