
Q. Code:853225



# **B.E./B.TECH. DEGREE EXAMINATIONS, MAY 2024**

Second Semester

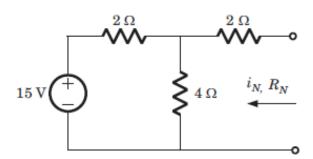
## **EC22202– CIRCUIT THEORY**

(Electronics and Communication Engineering)

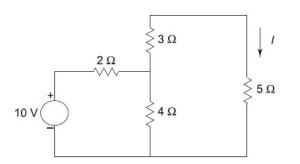
(Regulation 2022)

## **TIME: 2 HOURS**

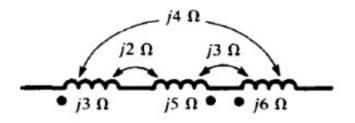
## MAX. MARKS: 60


1

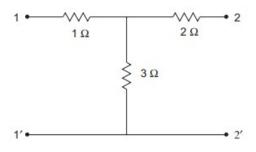
2


| COURSE<br>OUTCOMES | STATEMENT                                                                                                                                     | RBT<br>LEVEL |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| CO 1               | Apply suitable network theorems and analyze AC and DC circuits.                                                                               | 3            |
| CO 2               | Infer the phenomenon of series and parallel resonance in electrical circuits and understand the effect of magnetic coupling between windings. | 2            |
| <b>CO 3</b>        | Analyze the transient response for any RC, RL and RLC circuits.                                                                               | 4            |
| <b>CO 4</b>        | Evaluate the two port network parameters                                                                                                      | 5            |
| CO 5               | Sketch the various network topologies.                                                                                                        | 4            |

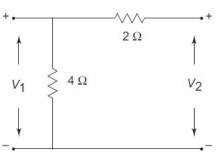
#### PART- A (10 x 2 = 20 Marks) (Answer all Ouestions)


|    | (Alliswer all Questions)                                                     | CO | RBT<br>LEVEL |
|----|------------------------------------------------------------------------------|----|--------------|
| 1. | Find norton's equivalent resistance (R <sub>N</sub> ) for the below circuit. | 1  | 2            |




2. Verify the reciprocity theorem for the below circuit.




3. For the given circuit, determine the equivalent inductive reactance.



- 4. Compute the value of R and L when the current through the RL circuit excited by a 10V 3 4 DC source is given by  $i(t) = 2(1-e^{-10t})$  A. Assume zero initial condition.
- 5. Find the z- parameters of the following two port network.



6. Find the h-parameters of the following network.



| 7. | The impedance parameters of a two-port network are $Z11 = 6\Omega$ ; $Z22 = 4 \Omega$ ; |   |   |
|----|-----------------------------------------------------------------------------------------|---|---|
|    | $Z12 = Z21 = 3 \Omega$ . Compute the Y parameters and write the describing equations.   |   |   |
| 8. | For a two-port bilateral and reciprocal network, the three transmission parameters are  | 4 | 4 |
|    | given by $A = 6/5$ , $B = 17/5$ and $C = 1/5$ , what is the value of D?                 |   |   |
|    |                                                                                         |   |   |

- 9. Define oriented graph.
- **10.** For the reduced incidence matrix shown below, find the incidence matrix.

|   |   |   |   |   |    |    |         | 8                                           |
|---|---|---|---|---|----|----|---------|---------------------------------------------|
| a | 1 | 0 | 0 | 0 | 1  | 0  | 0       | 1 ]                                         |
| b | 0 | 1 | 0 | 0 | -1 | 1  | 0       | 0                                           |
| c | 0 | 0 | 1 | 0 | 0  | -1 | 1       | -1                                          |
| d | 0 | 0 | 0 | 1 | 0  | 0  | $^{-1}$ | $\begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}$ |

Q. Code:853225 2 4

4

4

2

4

5

5

2

4

## Q. Code:853225

СО

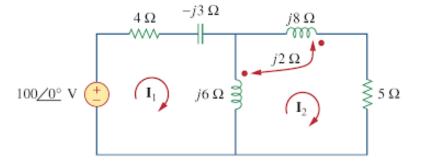
2

Marks

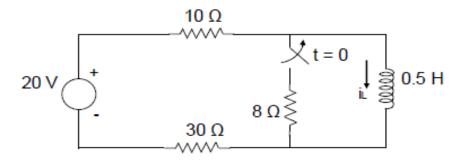
(10)

RBT

LEVEL


4

### **PART- B (3 x 10 = 30 Marks)**

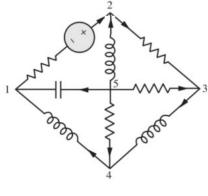

11. (a) A series RLC circuit consists of R = 100 ohms, L=0.02 H and C=0.02 (10) 2 4 microfarad. Calculate resonance frequency, quality factor, bandwidth, half power frequencies and maximum current at resonance if 100V sinusoidal signal is applied.

### (**OR**)

(b) Find the mesh currents for the circuit shown below,

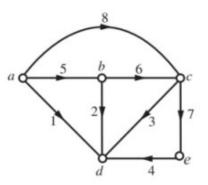


12. (a) The switch in the circuit shown below was in closed position for a long(10)34time. Find current  $i_L(t)$  for time t > 0.



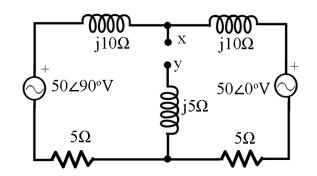

(**OR**)

(b) Determine the voltage  $V_c(t)$  and the current  $i_c(t)$  for  $t \ge 0$  for the circuit (10) 3 4 shown below.




13. (a) For the given network, determine the incidence matrix (A), Tie-set matrix (10) 5 4 (B), and cut-set matrix.




(OR)

(b) For the given network graph, determine the incidence matrix (A), Tie-set (10) 5 4 matrix (B), and cut-set matrix (C).



### <u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.14 is compulsory)

MarksCORBT14.If 10 Ω resistor is connected across XY terminal as load in the below(10)15circuit. Evaluate the current through the 10 Ω load resistor using the15theorem.



\*\*\*\*\*