	Reg. No.						
B.E. / EXAMIN S TIME: 3 COURSE	B.TECH. DEGREE NATIONS, MAY 2024 Seventh-Semester EC18702 – OPTICAL COMMUNICATION AND NETWORKS (Electronics and Communication Engineering) (Regulation 2018 / 2018A) HOURS MAX. MARKS: STATEMENT	100 RBT					
OUTCOMES		LEVEL					
CO 1	Evaluate the transmission characteristics and classify the structures of Optical fiber and types						
CO 2	Investigate the various signal degradation factors associated with optical fiber						
CO 3	Evaluate the various optical sources and optical detectors and their use in the optical communication system						
CO 4	Examine the digital transmission and its associated parameters on system performance with the optical fiber measurements and various coupling techniques						
CO 5	Enrich their knowledge on design of optical fiber networks such as SONET/SDH and optical CDMA systems						
	$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{A} \left(10 - 2 - 20 \mathbf{M}_{\text{cond}} \right)$						

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Compare and contrast when to use step index versus graded index optical fibers.	1	3
2.	Mention the merits and demerits of optical fiber communication, considering factors such as bandwidth, attenuation, and cost-effectiveness.	1	3
3.	Describe the various types of losses that occur in optical fibers.	2	2
4.	List out the causes of dispersion in optical fibers.	2	2
5.	Interpret the three requirements for laser action, which involve a gain medium, an optical cavity, and a pumping mechanism.	3	3
6.	Justify why silicon is not suitable for fabricating LEDs or laser diodes.	3	2
7.	Point out the common parameters to evaluate the performance of a digital receiver.	4	3

	Q. Cod				
8.	Write the advantages of using a trans-impedance amplifier in optical communication	4	2		
	systems.	7 2			
9.	Outline about the advantages of link budget in optical communication system design.	5	3		
10.	Mention the challenges involved in establishing optical networks.	5	3		

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	Construct a diagram illustrating the elements of an optical communication system, and apply your understanding of the evolution of optical fiber systems to explain the key advancements in each generation.	(8)	1	3
	(ii)	Given a step-index silica fiber with a core refractive index of 1.52 and a cladding refractive index of 1.49 calculate: (a) the critical angle at the core-cladding interface, (b) the numerical aperture for the fiber, (c) the acceptance angle in air for the fiber.	(6)	1	3

(OR)

- (b) (i) Apply the propagation characteristics of different rays and explain (6) 1 3 how these rays are effectively guided and transmitted through the fiber with relevant diagrams.
 - (ii) Apply Snell's law to explain the light refraction at the interface (8) 1 3 between two media with different refractive indices, and demonstrate the significance of the numerical aperture in determining the light-gathering ability of an optical fiber.

12. (a) Analyze the causes of attenuation in optical fibers due to scattering losses (14) 2 4 and bending losses, and illustrate these mechanisms with appropriate diagrams.

Q. Code:704322

(OR)

- (b) Explain the mechanisms of material dispersion and waveguide dispersion in (14) 2 4 optical fibers, applying the necessary mathematical expressions to quantify their contributions to overall dispersion.
- 13. (a) Compare and contrast the structures and operating principles of surface (14) 3 4 emitter LEDs and edge emitter LEDs, and recommend the most suitable type for a specific applications.

(OR)

- (b) Derive the equations for external quantum efficiency and external power (14) 3 4 generated in an LED, and apply them to calculate the expected performance of an LED.
- 14. (a) Discuss the different techniques available for measuring dispersion in (14) 4 3 optical fibers, considering their respective advantages, limitations, and suitability for specific applications.

(OR)

- (b) (i) Construct a step-by-step procedure to measure the total fiber (8) 4 3 attenuation and numerical aperture of an optical fiber.
 - (ii) Discuss the various error sources in a fiber optic receiver, and propose (6) 4 3 strategies to mitigate their impact on the system's performance.
- 15. (a) Construct the SONET (Synchronous Optical Network) frame structure, and (14) 5 4 analyze its components and their respective functions in enabling efficient data transmission over optical networks.

(OR)

- (b) (i) Explain the principle of Wavelength Division Multiplexing (WDM) by (6) 5 4 designing a simple WDM system that combines multiple wavelengths onto a single optical fiber.
 - (ii) Explain the detailed notes on Optical CDMA with its applications (8) 5 4

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

							Marks	CO	RBT
									LEVEL
16.	Using	the basic Maxwell's equations	for	a	source-free	condition,	(10)	1	4
	derive the mode equations for the cylindrical fiber								

Q. Code:704322