Q. Code:926784

Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Sixth Semester

EC18602- ANTENNA THEORY AND DESIGN

(Electronics and Communication Engineering)

(Regulation 2018 / 2018A)

TIME: 3 HOURS MAX. MARKS: 100 COURSE OUTCOMES STATEMENT RBT LEVEL Illustrate the insights of antennas and arrays. **CO1** 3 Determine the radiation characteristics of different types of aperture and slot antenna. 3 **CO 2 CO 3** Design microstrip antennas and its analysis. 3 2 Show the recent special antennas and its analysis. **CO 4** Identify the different types of propagation mechanisms at different frequencies. 2 **CO 5**

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define isotropic radiator.	1	1
2.	What is the need for antenna arrays?	1	1
3.	State Huygens' principle.	2	2
4.	What are the limitations of the reflector antenna?	2	2
5.	Compare the contact and non-contact methods of excitation techniques of microstrip patch antennas.	3	2
6.	List the limitations of microstrip patch antenna.	3	2
7.	Point out the applications of spiral antenna.	4	2
8.	Mention the applications of EBG structure in antennas.	4	2
9.	Find the maximum distance that can be covered by a space wave, when the antenna heights are 60 m and 120 m respectively.	5	2
10.	Define critical frequency.	5	1

PART- B (5 x 14 = 70 Marks)

		Marks	СО	RBT
				LEVEL
11. (a)	Apply the vector potential at a distant point due to small current element, calculate the field quantities and radiation resistance of the half wave dipole antenna.	(14)	1	3

(**OR**)

(b) Derive the expressions for field pattern of end-fire array of n sources of (14) 1 3 equal amplitude and spacing.

12. (a)	Obtain the design equations and discuss the principle of operation of horn antenna.	(14)	2	3
	(OR)			
(b)	With neat diagram explain the working principle of parabolic reflector antenna and also explain the various types of feed relative to their merits and demerits.	(14)	2	3
13. (a)	With necessary illustrations explain the radiation characteristics of microstrip antenna with different types of feeding structures and mention its application.	(14)	3	3
	(OR)			
(b)	Analyze the rectangular microstrip patch antenna using a model that represents the patch as a dielectric-loaded cavity.	(14)	3	3
14. (a)	With neat diagram explain the working principle of normal mode and axial mode helical antenna.	(14)	4	4
	(OR)			
(b)	With neat diagram explain the working principle of reflect array antenna.	(14)	4	4
15. (a)	With necessary diagram explain in detail about antenna gain and radiation pattern measurements.	(14)	5	3
	(OR)			
(b)	Divide the atmosphere in different layers and specify factors affecting the radio wave propagation.	(14)	5	3

$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(O \text{ No } 16 \text{ is compulsory})}$

	(Q.No.16 is compulsory)	Marks	CO	RBT LEVEL
16.	Design a rectangular microstrip antenna using a substrate (FR4) with	(10)	2	5
	dielectric constant of 4.4, $h = 1.2$ mm so as to resonate at 9 GHz.			
