Q. Code:140786

Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Sixth Semester

EC18601 – VLSI DESIGN

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS

MAX. MARKS: 100

1 11/11/0		100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Sketch the CMOS logic circuit using Stick Diagrams and Layout Diagrams.	3
CO 2	Identify the MOS circuits for various combinational logic blocks and analyze performance parameters.	3
CO 3	Develop Sequential logic blocks and perform timing analysis.	3
CO 4	Detect suitable MOS logic style for designing arithmetic logic blocks.	3
CO 5	Compute FPGA and perform testing.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define body bias effect.	1	2
2.	By what factor the gate capacitance must be scaled if constant electric field scaling is used?	1	3
3.	Highlight the feature and drawback of Domino Logic family?	2	2
4.	Design OR/NOR logic using Differential Pass Transistor Logic.	2	3
5.	In a bistable circuit, how is the stable state changed from one to another?	3	2
6.	How does clock gating reduce dynamic power?	3	2
7.	Define Bit Slicing and bring out the benefits of Bit-Slicing.	4	2
8.	Analyze the pros and cons of Carry Select Adders.	4	4
9.	What are the approaches in design for testability/ classification of testing?	5	2
10.	List the various types of programming technologies used in FPGA design.	5	2

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Define scaling? What are the various scaling principles widely used? Explain different scaling factors for device parameters and the limitations of scaling.	(14)	1	2
	(OR)			
(b)	With neat diagrams, explain the gate, source and drain formation and isolation steps in fabricating an inverter using p-well CMOS technology	(14)	1	2
12. (a)	Discuss about the signal integrity issues in dynamic design along with the methods to overcome the some of the issues.	(14)	2	3

(OR)

(b)	Draw the logic circuit for the given Boolean Expression, using the Logic Family mentioned below and write the <i>feature</i> and <i>limitation</i> of the respective logic family.	(14)	2	3
	Boolean Function $F = \overline{(A + BC)}$			
	(1) CMOS Logic			
	(2) Pseudo NMOS			
	(3) Differential Cascode Voltage Switch Logic (DCVSL)			
	(4) Dynamic Gate Logic			
	(5) Domino Logic			
13. (a)	Draw and explain the operation of a transmission gate mux based positive edge triggered register and analyze for the minimum clock period needed for reliable operation.	(14)	3	4
	(OR)			
(b)	With suitable diagrams explain why the propagation delay of a positive edge triggered True Single Phase Clocked Register, is equal to three inverter delays? What is the setup time for this register? When does this register malfunction?	(14)	3	4
14. (a)	Design a 16-bit Carry Bypass Adder and 16-bit Carry Select Adder and analyze the area and speed trade off.	(14)	4	3
	(OR)			
(b)	Draw the Booth Multiplier Structure with the various important blocks. Justify how Booth algorithm speeds up the multiplication process with an illustration of $6 \ge 6$ multiplication.	(14)	4	3
15. (a)	Explain scan-based testing and highlight the overheads involved.	(14)	5	4
	(OR)			
(b)	Bring out the features in Standard Cell Based ASIC and Gate Array Based ASIC along with the routing procedure for these ASICs.	(14)	5	4
	<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)	Marks	CO	RRT

16.Discuss about the 'Monotonicity Woes' in cascading Dynamic Logic (10)25Circuits with suitable illustration. How is it resolved? (8+2)

Q. Code:140786