Q. Code:181999

2

4

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fifth Semester

EC18502 – PRINCIPLES OF DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

(Regulation 2018 / 2018A)

TIME: 3	HOURS MAX. MARKS: 1	100
COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Determine the frequency spectrum of Discrete time signal using Discrete Fourier Transform.	3
CO 2	Interpret the characteristics of FIR filters and articulate the design of finite impulse response filters for filtering undesired signals.	4
CO 3	Observe the IIR filter characteristics and manipulate IIR filters in real time applications.	4
CO 4	Assess the word length effect in signal processing systems.	3
CO 5	Manipulate Multirate signal processing and observe its characteristics.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT
			LEVEL
1.	Find 4-point DFT of the sequence $x[n] = [1,0,1,0]$.	1	3
2.	Consider the 4-point Decimation-in-time (DIT) flow graph. What is the gain of the	1	3
	"signal path" that goes from x[1] to X(3)?		
3.	List out the properties of FIR filter.	2	1
4.	Realize the FIR filter in direct form structure.	2	3
	$H(z) = 1 + 2z^{-1} + 0.2z^{-2} - 0.25z^{-3} + 0.7z^{-4}$		

5. Determine the transfer function for the given Direct form II realization structure. 3 3

- 6. Given the specification $\alpha_p = 1$ dB; $\alpha_s = 30$ dB; $\Omega_p = 200$ rad/sec; $\Omega_s = 600$ rad/sec. 3 3 Determine the order of the Butterworth filter.
- 7. Compare the fixed point and floating point number representation.

		Q. Code:181999		
8.	Convert + $(0.125)_{10}$ and - $(0.125)_{10}$ to 2's complement binary format.	4	3	
9.	Find y[n] for the given block diagram.	5	3	

C. J. 101000

5

2

10. What is the need for anti-imaging filter after upsampler?

PART- B (5 x 14 = 70 Marks)

							Marks	CO	RBT LEVEL
11. (a)	Find the DFT of	of a sequence	$x[n] = \{1, 1, 1, 1, \dots, n\}$	1,1,0,0,0] u	sing DIF-FI	T algorithm.	(14)	1	3
				(OR)					
(b)	Determine	the	IDFT	of	the	sequence	(14)	1	3
	$X(k) = \{38, -5.\}$	828+j6.07,j	6,-0.172+ <i>j</i> 8	.07,-10,-0).172 — j 8.07	′,− <i>j</i> 6,−5.828-			
	using DIT-FFT	algorithm.							

12. (a) Design a Linear phase FIR lowpass filter using hamming window by taking 5 (14) 2 4 samples of window sequence and with a cutoff frequency, $\omega_c = 0.35\pi$ rad/samples. Also realize the system using direct form structure.

(OR)

- (b) Design a Linear phase FIR lowpass filter with a cutoff frequency of 0.5π (14) 2 4 rad/samples by taking 7 samples of ideal frequency response using frequency sampling method.
- 13. (a) Design a Butterworth digital IIR low pass filter using impulse invariant method (14) 3 4 by taking T=0.8 second to satisfy the following specifications.

Passband ripple ≤ 1.938 dB Stopband ripple ≥ 10.46 dB Passband edge frequency = 0.3π rad/sample Stopband edge frequency = 0.7π rad/sample

(OR)

(b) Design a Chebyshev digital IIR low pass filter using bilinear transformation by (14) 3 4 taking T = 1s to satisfy the following specifications.

$$0.707 \le \left| H\left(e^{j\omega}\right) \right| \le 1; 0 \le \omega \le 0.2 \pi$$
$$\left| H\left(e^{j\omega}\right) \right| \le 0.1; 0.5 \pi \le \omega \le \pi$$

14. (a) Explain the characteristics of a limit cycle oscillation with respect to the system (14) 4 5 described by the equation, y[n]=0.95 y[n-1]+x[n]. When the product is quantized to 5-bits (including sign bit) by rounding. The system is excited by an input x[n] = 0.75 for n=0 and x[n] = 0 for otherwise. Also evaluate the dead band of the filter.

(OR)

- (b) Two first order filters are connected in cascade whose system functions of (14) 4 5 the individual sections are $H_1(z) = \frac{1}{(1-0.35 z^{-1})}$ and $H_2(z) = \frac{1}{(1-0.35 z^{-1})}$. Evaluate the overall output noise power. Assume that the products are rounded to 4 bits (including sign bit).
- 15. (a) Derive the input-output relationship in both time and frequency domain of (14) 5 2Decimator and sketch its frequency spectrum.

(OR)

- (b) (i) Derive an expression for sampling rate conversion by a rational factor (7) 5 2
 I/D.
 - (ii) Discuss the Quadrature Mirror Filter bank with a suitable diagram. (7) 5 2

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

CO RBT LEVEL

Marks

16. Let X(k) denotes the 6-point DFT of the sequence x[n] = {-1, 4, 2, 3}, (10) 1 3 determine the sequence y[n] whose 6-point DFT is $Y(k) = W_3^{2k} X(k)$.

Q. Code:181999