Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

EC18402 – SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

(Regulation 2018 / 2018A)

TIME: 3 HOURS

1.

MAX. MARKS: 100

RBT

LEVEL

3

СО

1

Q. Code:688928

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Classify signals and systems based on their properties.	3
CO 2	Infer the spectral characteristics of continuous time signals by applying Fourier and	3
CO 3	Laplace transform. Use the principles of Fourier transform and Z transform to analyze the characteristics of discrete time signals.	3
CO 4	Determine the response of continuous and discrete time LTI systems.	3
CO 5	Illustrate the process of sampling and the effects of under and over sampling.	3

PART- A (10 x 2 = 20 Marks) (Answer all Ouestions)

	an Questions)
Sketch the signal $x[n]=u[n-2]+u[n+2]$.	

2.	Give the relation between unit impulse function $\delta(t)$, unit step function $u(t)$ and unit ramp function $r(t)$.	1	3
3.	Find the Fourier transform of $x(t) = \delta(t-t_0)$.	2	3
4.	Determine the initial and final values of a signal x(t) whose unilateral Laplace transform is $X(s) = \frac{7 s + 10}{s(s+2)}$.	2	3
5.	Check whether the system $h(t) = e^{-4t}u(-t)$ is stable or not.	4	5
6.	Determine the frequency response of the system described by the equation $\frac{d^2 y(t)}{dt^2} + 6 \frac{dy(t)}{dt} - 5 y(t) = 6 x(t)$	4	3
7.	State the need for sampling.	5	1
8.	Find the Z-transform and its associated ROC for $x[n] = \{1, -1, 3, 2, 4\}$	3	3
9.	Write any two properties of convolution sum.	4	2
10.	Compare recursive and non recursive system.	4	3

PART- B (5 x 14 = 70 Marks)

MarksCORBT
LEVEL11. (a)Determine whether the signal is a power signal (or) energy signal (or)(14)13

i.
$$x(t) = e^{j\left(2t + \left(\frac{\pi}{4}\right)\right)}$$

ii. $x[n] = \left\{ \left(\frac{1}{2}\right)^n n \ge 0 \\ (3)^n n < 0 \right\}$

neither.

(**OR**)

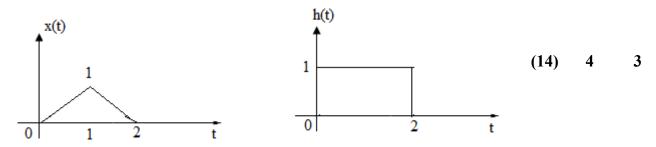
(b) Check whether the following systems are Linear or Nonlinear, Time variant (14) 1 3 or Invariant, Causal or Non-causal, BIBO Stable or Unstable.

i.
$$y(t)=tx(2t)+x(t-3)$$

ii. $y[n]=x[n+2]+x[-n-2]$

12. (a) Determine the Fourier transform of a signal $x(t) = e^{-2 \lor t \lor i \cdot i}$ and also sketch its (14) 2 3 magnitude and phase reponse.

(OR)


- (b) Determine the signal x(t) whose bilateral Laplace transform, (14) 2 3 $X(s) = \frac{3s+7}{s^2-2s-3}$ for the following ROCs. (i) $\Re\{s \ge 3$ (ii) $\Re\{s\} \le 1$ (iii) $-1 \le \Re\{s\} \le 3$
- 13. (a) Consider a continuous time LTI system for which the input x(t) and output (14) 4 3 y(t) are related by,

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

- (a) Find the system function, H(s)
- (b) Determine the impulse response h(t) for the following cases:
 - i) System is Causal
 - ii) System is Stable
 - iii) System is neither Causal nor Stable

(OR)

(b) Find the convolution of the given signals using graphical method.

- 14. (a) (i) What is the minimum sampling frequency required for the given (6) 5 3 continuous time signal $x(t)=200\sin(400t).\sin(500t)$ to avoid aliasing?
 - (ii) Determine the Discrete Time Fourier transform of the following(8) 3 3signal.

$$x[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

(OR)

- (b) (i) Consider the signal $x(t) = e^{-t}$ for an interval $0 \le t \le 2$, sample the signal (6) 5 3 with a sampling period T = 0.2s and sketch the discrete time signal.
 - (ii) Determine the Z transform and their ROC of the discrete time signal (8) 3 3 $x[n]=0.4^{|n|}$.

Determine the response of the system governed by difference equation y[n]=0.7 y[n-1]-0.12 y[n-2]+x[n-1]+x[n-2] to the input x[n]=nu[n].

(OR)

(14) 4 3

Convolve the following signal:

$$x[n] = (0.5)^{n-2}u[n-2]$$

 $h[n] = u[n+2]$

(b)

Q. Code:688928

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory) Marks CO RBT LEVEL 16. Determine whether or not each of the following signals is periodic. If a (10) 1 3 signal is periodic, specify its fundamental period.

i.
$$x(t) = \cos^2(2t - \left(\frac{\pi}{3}\right))$$

ii. $x[n] = e^{j\frac{3}{5}\left(n + \frac{1}{2}\right)}$