Q. Code:616727

Reg. No. **B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024** Fourth Semester EC18401 – ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) (Regulation 2018 / 2018A) **TIME: 3 HOURS MAX. MARKS: 100** Comprehend and appreciate the significance and role of this course in the present contemporary 3 world. Acquire the knowledge on different modulation techniques. 3 Investigate the effect of noise and its performance in different communication systems. 4 Explore and appreciate the significance of the different baseband signal processing techniques in 4 communication systems. Understand the role of random process in communication systems. 2 **PART-** A (10 x 2 = 20 Marks) (Answer all Questions) СО RBT LEVEL What is the need for modulation? 1 2 A carrier of 80MHz is amplitude modulated with a signal frequency of 12KHz and 3 1 amplitude of 20V. If the modulation index m_a=1, determine the amplitude of the carrier signal Compare narrow band and wide band FM. 2 4 In an FM system, if the maximum value of deviation is 80KHz and the maximum 2 3 modulating frequency is 20 KHz, Calculate the deviation ratio and bandwidth of the system using Carson's rule. Compare strict sense stationary(SSS) and wide sense stationary random 2 4 process(WSS). Discuss how the random process can be expressed as a function of random variables? 2 3

CO1

CO 2

CO3

CO 4

CO 5

1.

2.

3.

4.

5.

6.

Formulate the narrow-band noise n(t) at the BPF output in terms of its in-phase and 4 2 quadrature components.

	Q. Code	ode:616/2/		
		CO	RBT LEVEL	
1.	What is the need for modulation?	1	2	
8.	Calculate the thermal noise voltage generated by a 40 $K \boldsymbol{\Omega}$ resistor at a room	4	3	
	temperature of 290 K for a bandwidth of 200 KHz.			
9.	How the message be recovered from PAM Signal?	5	2	
10.	What is the need for multiplexing?	5	2	
	······································	-	-	

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	A carrier is amplitude modulated to a depth of 80 percent. Calculate the total power in the modulated wave, if the carrier power is 32 Kilo Watts.	(7)	1	3
	(ii)	With a neat block diagram, explain the operation of the superheterodyne AM receiver.	(7)	1	2
		(OR)			
(b)	(i)	A modulating signal 20 sin ($2\pi \times 10^3$ t) is used to modulate a carrier	(7)	1	3
		signal 60sin ($2\pi \times 10^6$ t). Determine			
		i) Modulation index.			
		ii) Percentage modulation.			
		iii) Frequencies and amplitudes of sideband components.			
		iv) Bandwidth of modulating signal			
		Also, draw the spectrum of the AM wave.			
	(ii)	Explain Hilbert transform in detail.	(7)	1	2
12. (a)	Exp	lain FM demodulator circuit which should not respond to amplitude	(14)	2	2

(a) Explain FM demodulator circuit which should not respond to amplitude (14) 2 variations. Support your answer in detail with its diagram.

Q. Code:616727

2

2

(14)

(OR)

(b) Explain the operation of a balanced slope detector with neat diagram.

13. (a)	(i)	Explain Gaussian random process with its properties.	(7)	3	2
	(ii)	Let X denotes the random process having pdf	(7)	3	3
		$\int (1/2\pi) = \int 1/2\pi \qquad 0 \le x \le 2\pi$			
		$T_X(x) = \begin{bmatrix} 0 & \text{elsewhere} \end{bmatrix}$			
		Calculate the mean, mean square value and variance of the random process.			
		(OR)			
(b)	(i)	Determine the mean and variance of a stationary process whose autocorrelation function is given by	(7)	3	3
		$R_{xx}(\tau) = 18 + (\frac{2}{16 + \tau^2} i)$			
	(ii)	Discuss the properties of the Autocorrelation function of a stationary process.	(7)	3	2
14 (a)	Just	ify how a narrow band noise can be expressed in terms of in-phase and	(14)	4	3
	qua	drature components as well as envelope and phase components.	()		
		(OR)			
(b)	Der	ive the expression for the output signal-to-noise ratio and figure of	(14)	4	3
	mer	it of an AM receiver using envelope detection.			
15. (a)	Disc	cuss how various signals can be multiplexed in time slots with a neat	(14)	5	4
	diag	gram.			
(b)	Evn	(UK)	(14)	5	1
(0)	with	a neat block diagram.	(14)	3	4
		<u>PART- C (1 x 10 = 10 Marks)</u>			
		(Q.No.16 is compulsory)			
			Marks	CO	RBT LEVEL
16.	Give	n that the WSS random process $x(t)=20\cos(100t+\Theta)$ where Θ is a	(10)	3	3

3

Q. Code:616727

random variable uniformly distributed in the interval $[-\pi, \pi]$. Prove that the

process is

- a) Wide sense stationary
- b) Ergodic in mean and autocorrelation
