		Q. Code:532950											6		
	Reg. No.														
B.E / B.TECH. DEGREE											-				

EXAMINATIONS, MAY 2024

Third Semester

EC18304 – DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

COURSE OUTCOMES	STATEMENT	R L	RBT LEVEI
CO 1	Analyze different methods used for simplification of Boolean expressio	ons.	3
CO 2	Design various Combinational circuits using logic gates.		2
CO 3	Analyze and design synchronous and asynchronous sequential circuits.		3
CO 4	Design RAM, ROM, PAL and PLA devices.		3
CO 5	Write simple HDL codes for digital circuits.		3
TIME: 3 HO	OURS M	AX. MARKS: 100	

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Which gates are called the universal gates? What are its advantages?	1	2
2.	Prove $(x+y)(x'z'+z)(y'+xz)'=x'y$	1	3
3.	Draw the logic diagram of a full subtractor.	2	1
4.	Compare combinational and sequential circuits.	2	4
5.	Identify a sequential circuit which uses 4 memory elements and the complemented output of the last memory element is fed as the input to the first memory element and draw the same.	3	4
6.	How many flip-flops are required to design a counter that counts from 0 to 30?	3	2
7.	Draw the circuit diagram of 2 input CMOS NOR gates.	4	1
8.	Implement the Ex-OR function using ROM.	4	4
9.	Compare critical and non critical races.	5	4
10.	Write the Verilog code for the half subtractor.	5	2

PART- B (5 x 14 = 70 Marks)

		Q	Q. Code:		
		Marks	CO	RBT LEVEL	
11. (a)	Find the minimal SOP representations for F (A, B, C, D, E) = m (1,4,6,10,20,22,24,26) +d (0,11,16,27) using the K- map method. Draw the circuit of the minimal expression using only NOR gates.	(14)	1	3	
a \			_		
(b)	Minimize the given function using Quine Mc Cluskey method $F(A,B,C,D) = \Sigma(0,2,3,6,7,8,10,11,12,15)$	(14)	1	3	
12. (a)	(i) Derive the equation of 4-bit carry look-ahead adder and draw	(10)	2	3	
	its diagram.				
	(ii) Design a full subtractor using 2 half subtractors.	(4)	2	3	
	(OR)				
(b)	Design a BCD adder that will add two 4-bit numbers and explain its working with the necessary circuit diagram.	(14)	2	3	
13. (a)	(i) Design a 2-bit universal shift register	(8)	3	3	
	(ii) How to realize JK flip flop using D flipflop?	(6)	3	3	
	(OR)				
(b)	Explain the operation of the master slave flip flop and show how the race around condition is eliminated.	(14)	3	3	
14. (a)	Implement the following function using PLA. F1(A,B,C)= Σ m(4,5,7) F2(A,B,C) = Σ m(3,5,7)	(14)	4	3	
	(OR)				
(b)	Design a memory decoder to select 2 numbers of 4 KB EPROM ICs	(14)	4	3	
	and two numbers of 8 KB RAM ICs.				
15. (a)	(i) With suitable examples, explain the various problems encountered in asynchronous sequential circuit design and design a hazard free circuit for the given function $y = \Sigma m (1,2,4,5,7,12,14,15)$. justify your answer.	(10)	5	4	
	(ii) Write a Verilog code for 4:1 MUX.	(4)	5	4	
	(OR)				
(b)	Design an asynchronous sequential circuit using D flin flon with two	(14)	5	Λ	
(0)	inputs A and B to give an output Z=1 when AB=11 but only if A becomes 1 before B.Draw the necessary state diagrams.	(14)	5	4	

Q. Code:532956

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

 Marks
 CO
 RBT

 16. Design a synchronous counter using D flip flops that counts the given (10)
 3
 3

 sequence
 3
 3

000,011,110,111,011,000,.....
